Why use ultrasound for medical imaging? The 2019 Stack Overflow Developer Survey Results Are...
What was the last x86 CPU that did not have the x87 floating-point unit built in?
How to delete random line from file using Unix command?
Typeface like Times New Roman but with "tied" percent sign
How to politely respond to generic emails requesting a PhD/job in my lab? Without wasting too much time
Am I ethically obligated to go into work on an off day if the reason is sudden?
Python - Fishing Simulator
Take groceries in checked luggage
Who or what is the being for whom Being is a question for Heidegger?
How do you keep chess fun when your opponent constantly beats you?
Was credit for the black hole image misattributed?
Can a novice safely splice in wire to lengthen 5V charging cable?
Derivation tree not rendering
Why not take a picture of a closer black hole?
Does the AirPods case need to be around while listening via an iOS Device?
Change bounding box of math glyphs in LuaTeX
Why does the Event Horizon Telescope (EHT) not include telescopes from Africa, Asia or Australia?
Scientific Reports - Significant Figures
How did the audience guess the pentatonic scale in Bobby McFerrin's presentation?
The variadic template constructor of my class cannot modify my class members, why is that so?
Finding degree of a finite field extension
He got a vote 80% that of Emmanuel Macron’s
How to prevent selfdestruct from another contract
"... to apply for a visa" or "... and applied for a visa"?
How do I add random spotting to the same face in cycles?
Why use ultrasound for medical imaging?
The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Is there an upper frequency limit to ultrasound?How is it possible for an Ultrasound device to correctly interpret a negative density change in tissue?How specifically does an MRI machine build an image from received radio wavesIs it possible to send modulated ultrasound wave from underwater to air?Why the Doppler Ultrasound beam needs to be looking directly down at a pipeIntensity of an ultrasound beam?Dynamic range of ultrasound machine expressed in dBUltrasound wave/beam generationDoppler effect of sound waves in bloodAveraging speed of ultrasound between two differnt boundaires
$begingroup$
What advantage does ultrasound have over sound between 20-20000Hz that it is used in medical imaging over sound in that frequency range?
energy acoustics frequency wavelength medical-physics
New contributor
$endgroup$
add a comment |
$begingroup$
What advantage does ultrasound have over sound between 20-20000Hz that it is used in medical imaging over sound in that frequency range?
energy acoustics frequency wavelength medical-physics
New contributor
$endgroup$
$begingroup$
your edits are quite helpful, but can I ask why you do edits so frequently?
$endgroup$
– Ubaid Hassan
16 mins ago
$begingroup$
Tagging is important, it helps people find things, helps the system that auto-identified related content, and enables meaningful analysis of site usage patterns. BUt good tagging takes time, attention to detail, and a minimum level of expertise so that you can identify the relevant tags.
$endgroup$
– dmckee♦
12 mins ago
add a comment |
$begingroup$
What advantage does ultrasound have over sound between 20-20000Hz that it is used in medical imaging over sound in that frequency range?
energy acoustics frequency wavelength medical-physics
New contributor
$endgroup$
What advantage does ultrasound have over sound between 20-20000Hz that it is used in medical imaging over sound in that frequency range?
energy acoustics frequency wavelength medical-physics
energy acoustics frequency wavelength medical-physics
New contributor
New contributor
edited 55 mins ago
Qmechanic♦
108k122001245
108k122001245
New contributor
asked 1 hour ago
Ubaid HassanUbaid Hassan
19511
19511
New contributor
New contributor
$begingroup$
your edits are quite helpful, but can I ask why you do edits so frequently?
$endgroup$
– Ubaid Hassan
16 mins ago
$begingroup$
Tagging is important, it helps people find things, helps the system that auto-identified related content, and enables meaningful analysis of site usage patterns. BUt good tagging takes time, attention to detail, and a minimum level of expertise so that you can identify the relevant tags.
$endgroup$
– dmckee♦
12 mins ago
add a comment |
$begingroup$
your edits are quite helpful, but can I ask why you do edits so frequently?
$endgroup$
– Ubaid Hassan
16 mins ago
$begingroup$
Tagging is important, it helps people find things, helps the system that auto-identified related content, and enables meaningful analysis of site usage patterns. BUt good tagging takes time, attention to detail, and a minimum level of expertise so that you can identify the relevant tags.
$endgroup$
– dmckee♦
12 mins ago
$begingroup$
your edits are quite helpful, but can I ask why you do edits so frequently?
$endgroup$
– Ubaid Hassan
16 mins ago
$begingroup$
your edits are quite helpful, but can I ask why you do edits so frequently?
$endgroup$
– Ubaid Hassan
16 mins ago
$begingroup$
Tagging is important, it helps people find things, helps the system that auto-identified related content, and enables meaningful analysis of site usage patterns. BUt good tagging takes time, attention to detail, and a minimum level of expertise so that you can identify the relevant tags.
$endgroup$
– dmckee♦
12 mins ago
$begingroup$
Tagging is important, it helps people find things, helps the system that auto-identified related content, and enables meaningful analysis of site usage patterns. BUt good tagging takes time, attention to detail, and a minimum level of expertise so that you can identify the relevant tags.
$endgroup$
– dmckee♦
12 mins ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
I think the simple answer here is resolution.
Generally when imaging with waves (including light) the limit to resolution is a length that is similar to the wavelength, $lambda$.
If $f$ is the frequency and $c$ is the speed of the wave then the wavelength is given by
$$lambda = {c over f} $$
so the higher we make $f$ the smaller $lambda$ becomes and the better the resolution and the more detail we can see in scans....
The speed of sound in water is ~1500 m/s and with say 1.5 MHz = 1 500 000 Hz frequency we calculate
$$lambda = 0.001 {rm m} = 1 {rm mm}$$
At 20000 Hz $lambda = 75$ mm
$endgroup$
$begingroup$
Is it correct to say wavelength is inversely proportional to resolution? Or that sound wave frequency is directly proportional to resolution?
$endgroup$
– Ubaid Hassan
13 mins ago
1
$begingroup$
The correct statement is in terms of wavelength. That said, for non-dispersive waves (which is reasonably true for sound) in consistent media (not really true for medical ultra-sounds) the wavelength statements implies the frequency one as a corollary.
$endgroup$
– dmckee♦
9 mins ago
add a comment |
$begingroup$
Higher frequency provides higher resolution.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "151"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Ubaid Hassan is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f472565%2fwhy-use-ultrasound-for-medical-imaging%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I think the simple answer here is resolution.
Generally when imaging with waves (including light) the limit to resolution is a length that is similar to the wavelength, $lambda$.
If $f$ is the frequency and $c$ is the speed of the wave then the wavelength is given by
$$lambda = {c over f} $$
so the higher we make $f$ the smaller $lambda$ becomes and the better the resolution and the more detail we can see in scans....
The speed of sound in water is ~1500 m/s and with say 1.5 MHz = 1 500 000 Hz frequency we calculate
$$lambda = 0.001 {rm m} = 1 {rm mm}$$
At 20000 Hz $lambda = 75$ mm
$endgroup$
$begingroup$
Is it correct to say wavelength is inversely proportional to resolution? Or that sound wave frequency is directly proportional to resolution?
$endgroup$
– Ubaid Hassan
13 mins ago
1
$begingroup$
The correct statement is in terms of wavelength. That said, for non-dispersive waves (which is reasonably true for sound) in consistent media (not really true for medical ultra-sounds) the wavelength statements implies the frequency one as a corollary.
$endgroup$
– dmckee♦
9 mins ago
add a comment |
$begingroup$
I think the simple answer here is resolution.
Generally when imaging with waves (including light) the limit to resolution is a length that is similar to the wavelength, $lambda$.
If $f$ is the frequency and $c$ is the speed of the wave then the wavelength is given by
$$lambda = {c over f} $$
so the higher we make $f$ the smaller $lambda$ becomes and the better the resolution and the more detail we can see in scans....
The speed of sound in water is ~1500 m/s and with say 1.5 MHz = 1 500 000 Hz frequency we calculate
$$lambda = 0.001 {rm m} = 1 {rm mm}$$
At 20000 Hz $lambda = 75$ mm
$endgroup$
$begingroup$
Is it correct to say wavelength is inversely proportional to resolution? Or that sound wave frequency is directly proportional to resolution?
$endgroup$
– Ubaid Hassan
13 mins ago
1
$begingroup$
The correct statement is in terms of wavelength. That said, for non-dispersive waves (which is reasonably true for sound) in consistent media (not really true for medical ultra-sounds) the wavelength statements implies the frequency one as a corollary.
$endgroup$
– dmckee♦
9 mins ago
add a comment |
$begingroup$
I think the simple answer here is resolution.
Generally when imaging with waves (including light) the limit to resolution is a length that is similar to the wavelength, $lambda$.
If $f$ is the frequency and $c$ is the speed of the wave then the wavelength is given by
$$lambda = {c over f} $$
so the higher we make $f$ the smaller $lambda$ becomes and the better the resolution and the more detail we can see in scans....
The speed of sound in water is ~1500 m/s and with say 1.5 MHz = 1 500 000 Hz frequency we calculate
$$lambda = 0.001 {rm m} = 1 {rm mm}$$
At 20000 Hz $lambda = 75$ mm
$endgroup$
I think the simple answer here is resolution.
Generally when imaging with waves (including light) the limit to resolution is a length that is similar to the wavelength, $lambda$.
If $f$ is the frequency and $c$ is the speed of the wave then the wavelength is given by
$$lambda = {c over f} $$
so the higher we make $f$ the smaller $lambda$ becomes and the better the resolution and the more detail we can see in scans....
The speed of sound in water is ~1500 m/s and with say 1.5 MHz = 1 500 000 Hz frequency we calculate
$$lambda = 0.001 {rm m} = 1 {rm mm}$$
At 20000 Hz $lambda = 75$ mm
edited 38 mins ago
answered 57 mins ago
tomtom
6,38711627
6,38711627
$begingroup$
Is it correct to say wavelength is inversely proportional to resolution? Or that sound wave frequency is directly proportional to resolution?
$endgroup$
– Ubaid Hassan
13 mins ago
1
$begingroup$
The correct statement is in terms of wavelength. That said, for non-dispersive waves (which is reasonably true for sound) in consistent media (not really true for medical ultra-sounds) the wavelength statements implies the frequency one as a corollary.
$endgroup$
– dmckee♦
9 mins ago
add a comment |
$begingroup$
Is it correct to say wavelength is inversely proportional to resolution? Or that sound wave frequency is directly proportional to resolution?
$endgroup$
– Ubaid Hassan
13 mins ago
1
$begingroup$
The correct statement is in terms of wavelength. That said, for non-dispersive waves (which is reasonably true for sound) in consistent media (not really true for medical ultra-sounds) the wavelength statements implies the frequency one as a corollary.
$endgroup$
– dmckee♦
9 mins ago
$begingroup$
Is it correct to say wavelength is inversely proportional to resolution? Or that sound wave frequency is directly proportional to resolution?
$endgroup$
– Ubaid Hassan
13 mins ago
$begingroup$
Is it correct to say wavelength is inversely proportional to resolution? Or that sound wave frequency is directly proportional to resolution?
$endgroup$
– Ubaid Hassan
13 mins ago
1
1
$begingroup$
The correct statement is in terms of wavelength. That said, for non-dispersive waves (which is reasonably true for sound) in consistent media (not really true for medical ultra-sounds) the wavelength statements implies the frequency one as a corollary.
$endgroup$
– dmckee♦
9 mins ago
$begingroup$
The correct statement is in terms of wavelength. That said, for non-dispersive waves (which is reasonably true for sound) in consistent media (not really true for medical ultra-sounds) the wavelength statements implies the frequency one as a corollary.
$endgroup$
– dmckee♦
9 mins ago
add a comment |
$begingroup$
Higher frequency provides higher resolution.
$endgroup$
add a comment |
$begingroup$
Higher frequency provides higher resolution.
$endgroup$
add a comment |
$begingroup$
Higher frequency provides higher resolution.
$endgroup$
Higher frequency provides higher resolution.
answered 57 mins ago
akhmeteliakhmeteli
18.5k21844
18.5k21844
add a comment |
add a comment |
Ubaid Hassan is a new contributor. Be nice, and check out our Code of Conduct.
Ubaid Hassan is a new contributor. Be nice, and check out our Code of Conduct.
Ubaid Hassan is a new contributor. Be nice, and check out our Code of Conduct.
Ubaid Hassan is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Physics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f472565%2fwhy-use-ultrasound-for-medical-imaging%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
your edits are quite helpful, but can I ask why you do edits so frequently?
$endgroup$
– Ubaid Hassan
16 mins ago
$begingroup$
Tagging is important, it helps people find things, helps the system that auto-identified related content, and enables meaningful analysis of site usage patterns. BUt good tagging takes time, attention to detail, and a minimum level of expertise so that you can identify the relevant tags.
$endgroup$
– dmckee♦
12 mins ago