I could not break this equation. Please help me The 2019 Stack Overflow Developer Survey...

Finding the path in a graph from A to B then back to A with a minimum of shared edges

Make it rain characters

"... to apply for a visa" or "... and applied for a visa"?

Are my PIs rude or am I just being too sensitive?

Semisimplicity of the category of coherent sheaves?

What can I do if neighbor is blocking my solar panels intentionally?

Does the AirPods case need to be around while listening via an iOS Device?

University's motivation for having tenure-track positions

ELI5: Why do they say that Israel would have been the fourth country to land a spacecraft on the Moon and why do they call it low cost?

Grover's algorithm - DES circuit as oracle?

Derivation tree not rendering

Problems with Ubuntu mount /tmp

When did F become S? Why?

Can a 1st-level character have an ability score above 18?

Create an outline of font

Can the DM override racial traits?

First use of “packing” as in carrying a gun

Arduino Pro Micro - switch off LEDs

Can smartphones with the same camera sensor have different image quality?

Did God make two great lights or did He make the great light two?

Can withdrawing asylum be illegal?

Road tyres vs "Street" tyres for charity ride on MTB Tandem

What information about me do stores get via my credit card?

Didn't get enough time to take a Coding Test - what to do now?



I could not break this equation. Please help me



The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)please help me fit my equation into my margins!List of equations, including equation contents and captionPlease how can I write this equation in latex?help in writing equationequation reference too close to equationLaTex error please helpHow continue a equation next lineI need help to write this equationequation custom horizontal alignment & numbering each rowCan anyone please help me to solve this? No equation number is appearing for this code












2















 f_2=frac{sqrt{frac{s-4 text{mpsi}^2}{s-4 text{me}^2}} left(16 text{ca} text{cw} text{EE}^2 g
text{gpsi} s^2 sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)} cos (theta ) text{mZ}^8-64
text{ca} text{cw} text{EE}^2 g text{gpsi} text{me}^2 s sqrt{s left(-4 text{me}^2+4
text{mpsi}^2+sright)} cos (theta ) text{mZ}^8+8 text{ca} text{cw} text{EE}^2 g text{gpsi} s^4
cos (theta ) text{mZ}^6-32 text{ca} text{cw} text{EE}^2 g text{gpsi} text{me}^2 s^3 cos
(theta ) text{mZ}^6+16 text{ca} text{cw} text{EE}^2 g text{gpsi} s^2 sqrt{s left(-4
text{me}^2+4 text{mpsi}^2+sright)} Gamma ^2 cos (theta ) text{mZ}^6-64 text{ca} text{cw}
text{EE}^2 g text{gpsi} text{me}^2 s sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)} Gamma
^2 cos (theta ) text{mZ}^6-40 text{ca} text{cw} text{EE}^2 g text{gpsi} s^3 sqrt{s left(-4
text{me}^2+4 text{mpsi}^2+sright)} cos (theta ) text{mZ}^6+160 text{ca} text{cw} text{EE}^2 g
text{gpsi} text{me}^2 s^2 sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)} cos (theta )
text{mZ}^6-16 text{ca} text{cw} text{EE}^2 g text{gpsi} s^5 cos (theta ) text{mZ}^4+64
text{ca} text{cw} text{EE}^2 g text{gpsi} text{me}^2 s^4 cos (theta ) text{mZ}^4+8 text{ca}
text{cw} text{EE}^2 g text{gpsi} s^4 Gamma ^2 cos (theta ) text{mZ}^4-32 text{ca} text{cw}
text{EE}^2 g text{gpsi} text{me}^2 s^3 Gamma ^2 cos (theta ) text{mZ}^4-8 text{ca} text{cw}
text{EE}^2 g text{gpsi} s^3 sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)} Gamma ^2 cos
(theta ) text{mZ}^4+32 text{ca} text{cw} text{EE}^2 g text{gpsi} text{me}^2 s^2 sqrt{s left(-4
text{me}^2+4 text{mpsi}^2+sright)} Gamma ^2 cos (theta ) text{mZ}^4+32 text{ca} text{cw}
text{EE}^2 g text{gpsi} s^4 sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)} cos (theta )
text{mZ}^4-128 text{ca} text{cw} text{EE}^2 g text{gpsi} text{me}^2 s^3 sqrt{s left(-4
text{me}^2+4 text{mpsi}^2+sright)} cos (theta ) text{mZ}^4-8 a text{ca} text{cv} g^2
text{gpsi}^2 s^3 sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)} sqrt{text{mZ}^4+left(Gamma
^2-2 sright) text{mZ}^2+s^2} cos (theta ) text{mZ}^4+32 a text{ca} text{cv} g^2 text{gpsi}^2
text{me}^2 s^2 sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)} sqrt{text{mZ}^4+left(Gamma
^2-2 sright) text{mZ}^2+s^2} cos (theta ) text{mZ}^4+8 text{ca} text{cw} text{EE}^2 g
text{gpsi} s^6 cos (theta ) text{mZ}^2-32 text{ca} text{cw} text{EE}^2 g text{gpsi} text{me}^2
s^5 cos (theta ) text{mZ}^2-8 text{ca} text{cw} text{EE}^2 g text{gpsi} s^5 sqrt{s left(-4
text{me}^2+4 text{mpsi}^2+sright)} cos (theta ) text{mZ}^2+32 text{ca} text{cw} text{EE}^2 g
text{gpsi} text{me}^2 s^4 sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)} cos (theta )
text{mZ}^2-8 a text{ca} text{cv} g^2 text{gpsi}^2 s^5 sqrt{text{mZ}^4+left(Gamma ^2-2 sright)
text{mZ}^2+s^2} cos (theta ) text{mZ}^2+32 a text{ca} text{cv} g^2 text{gpsi}^2 text{me}^2 s^4
sqrt{text{mZ}^4+left(Gamma ^2-2 sright) text{mZ}^2+s^2} cos (theta ) text{mZ}^2+8 a text{ca}
text{cv} g^2 text{gpsi}^2 s^4 sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)}
sqrt{text{mZ}^4+left(Gamma ^2-2 sright) text{mZ}^2+s^2} cos (theta ) text{mZ}^2-32 a text{ca}
text{cv} g^2 text{gpsi}^2 text{me}^2 s^3 sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)}
sqrt{text{mZ}^4+left(Gamma ^2-2 sright) text{mZ}^2+s^2} cos (theta ) text{mZ}^2right) theta
left(s-4 text{mpsi}^2right)}{256 text{cw}^2 text{mZ}^4 pi ^2 s^3 left(text{mZ}^4+left(Gamma
^2-2 sright) text{mZ}^2+s^2right)^{3/2}}









share|improve this question









New contributor




Sahabub Jahedi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
















  • 6





    Let me guess: This was generated by some computer algebra system, Maple perhaps?

    – Harald Hanche-Olsen
    2 hours ago






  • 2





    I don't think breaking the equation into separate lines will help with the readability. It's a mess. Go back to maple and try to find a better output. Or start by finding where the fraction switches, and print the numerator and denominator separately.

    – Teepeemm
    1 hour ago
















2















 f_2=frac{sqrt{frac{s-4 text{mpsi}^2}{s-4 text{me}^2}} left(16 text{ca} text{cw} text{EE}^2 g
text{gpsi} s^2 sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)} cos (theta ) text{mZ}^8-64
text{ca} text{cw} text{EE}^2 g text{gpsi} text{me}^2 s sqrt{s left(-4 text{me}^2+4
text{mpsi}^2+sright)} cos (theta ) text{mZ}^8+8 text{ca} text{cw} text{EE}^2 g text{gpsi} s^4
cos (theta ) text{mZ}^6-32 text{ca} text{cw} text{EE}^2 g text{gpsi} text{me}^2 s^3 cos
(theta ) text{mZ}^6+16 text{ca} text{cw} text{EE}^2 g text{gpsi} s^2 sqrt{s left(-4
text{me}^2+4 text{mpsi}^2+sright)} Gamma ^2 cos (theta ) text{mZ}^6-64 text{ca} text{cw}
text{EE}^2 g text{gpsi} text{me}^2 s sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)} Gamma
^2 cos (theta ) text{mZ}^6-40 text{ca} text{cw} text{EE}^2 g text{gpsi} s^3 sqrt{s left(-4
text{me}^2+4 text{mpsi}^2+sright)} cos (theta ) text{mZ}^6+160 text{ca} text{cw} text{EE}^2 g
text{gpsi} text{me}^2 s^2 sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)} cos (theta )
text{mZ}^6-16 text{ca} text{cw} text{EE}^2 g text{gpsi} s^5 cos (theta ) text{mZ}^4+64
text{ca} text{cw} text{EE}^2 g text{gpsi} text{me}^2 s^4 cos (theta ) text{mZ}^4+8 text{ca}
text{cw} text{EE}^2 g text{gpsi} s^4 Gamma ^2 cos (theta ) text{mZ}^4-32 text{ca} text{cw}
text{EE}^2 g text{gpsi} text{me}^2 s^3 Gamma ^2 cos (theta ) text{mZ}^4-8 text{ca} text{cw}
text{EE}^2 g text{gpsi} s^3 sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)} Gamma ^2 cos
(theta ) text{mZ}^4+32 text{ca} text{cw} text{EE}^2 g text{gpsi} text{me}^2 s^2 sqrt{s left(-4
text{me}^2+4 text{mpsi}^2+sright)} Gamma ^2 cos (theta ) text{mZ}^4+32 text{ca} text{cw}
text{EE}^2 g text{gpsi} s^4 sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)} cos (theta )
text{mZ}^4-128 text{ca} text{cw} text{EE}^2 g text{gpsi} text{me}^2 s^3 sqrt{s left(-4
text{me}^2+4 text{mpsi}^2+sright)} cos (theta ) text{mZ}^4-8 a text{ca} text{cv} g^2
text{gpsi}^2 s^3 sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)} sqrt{text{mZ}^4+left(Gamma
^2-2 sright) text{mZ}^2+s^2} cos (theta ) text{mZ}^4+32 a text{ca} text{cv} g^2 text{gpsi}^2
text{me}^2 s^2 sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)} sqrt{text{mZ}^4+left(Gamma
^2-2 sright) text{mZ}^2+s^2} cos (theta ) text{mZ}^4+8 text{ca} text{cw} text{EE}^2 g
text{gpsi} s^6 cos (theta ) text{mZ}^2-32 text{ca} text{cw} text{EE}^2 g text{gpsi} text{me}^2
s^5 cos (theta ) text{mZ}^2-8 text{ca} text{cw} text{EE}^2 g text{gpsi} s^5 sqrt{s left(-4
text{me}^2+4 text{mpsi}^2+sright)} cos (theta ) text{mZ}^2+32 text{ca} text{cw} text{EE}^2 g
text{gpsi} text{me}^2 s^4 sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)} cos (theta )
text{mZ}^2-8 a text{ca} text{cv} g^2 text{gpsi}^2 s^5 sqrt{text{mZ}^4+left(Gamma ^2-2 sright)
text{mZ}^2+s^2} cos (theta ) text{mZ}^2+32 a text{ca} text{cv} g^2 text{gpsi}^2 text{me}^2 s^4
sqrt{text{mZ}^4+left(Gamma ^2-2 sright) text{mZ}^2+s^2} cos (theta ) text{mZ}^2+8 a text{ca}
text{cv} g^2 text{gpsi}^2 s^4 sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)}
sqrt{text{mZ}^4+left(Gamma ^2-2 sright) text{mZ}^2+s^2} cos (theta ) text{mZ}^2-32 a text{ca}
text{cv} g^2 text{gpsi}^2 text{me}^2 s^3 sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)}
sqrt{text{mZ}^4+left(Gamma ^2-2 sright) text{mZ}^2+s^2} cos (theta ) text{mZ}^2right) theta
left(s-4 text{mpsi}^2right)}{256 text{cw}^2 text{mZ}^4 pi ^2 s^3 left(text{mZ}^4+left(Gamma
^2-2 sright) text{mZ}^2+s^2right)^{3/2}}









share|improve this question









New contributor




Sahabub Jahedi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
















  • 6





    Let me guess: This was generated by some computer algebra system, Maple perhaps?

    – Harald Hanche-Olsen
    2 hours ago






  • 2





    I don't think breaking the equation into separate lines will help with the readability. It's a mess. Go back to maple and try to find a better output. Or start by finding where the fraction switches, and print the numerator and denominator separately.

    – Teepeemm
    1 hour ago














2












2








2








 f_2=frac{sqrt{frac{s-4 text{mpsi}^2}{s-4 text{me}^2}} left(16 text{ca} text{cw} text{EE}^2 g
text{gpsi} s^2 sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)} cos (theta ) text{mZ}^8-64
text{ca} text{cw} text{EE}^2 g text{gpsi} text{me}^2 s sqrt{s left(-4 text{me}^2+4
text{mpsi}^2+sright)} cos (theta ) text{mZ}^8+8 text{ca} text{cw} text{EE}^2 g text{gpsi} s^4
cos (theta ) text{mZ}^6-32 text{ca} text{cw} text{EE}^2 g text{gpsi} text{me}^2 s^3 cos
(theta ) text{mZ}^6+16 text{ca} text{cw} text{EE}^2 g text{gpsi} s^2 sqrt{s left(-4
text{me}^2+4 text{mpsi}^2+sright)} Gamma ^2 cos (theta ) text{mZ}^6-64 text{ca} text{cw}
text{EE}^2 g text{gpsi} text{me}^2 s sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)} Gamma
^2 cos (theta ) text{mZ}^6-40 text{ca} text{cw} text{EE}^2 g text{gpsi} s^3 sqrt{s left(-4
text{me}^2+4 text{mpsi}^2+sright)} cos (theta ) text{mZ}^6+160 text{ca} text{cw} text{EE}^2 g
text{gpsi} text{me}^2 s^2 sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)} cos (theta )
text{mZ}^6-16 text{ca} text{cw} text{EE}^2 g text{gpsi} s^5 cos (theta ) text{mZ}^4+64
text{ca} text{cw} text{EE}^2 g text{gpsi} text{me}^2 s^4 cos (theta ) text{mZ}^4+8 text{ca}
text{cw} text{EE}^2 g text{gpsi} s^4 Gamma ^2 cos (theta ) text{mZ}^4-32 text{ca} text{cw}
text{EE}^2 g text{gpsi} text{me}^2 s^3 Gamma ^2 cos (theta ) text{mZ}^4-8 text{ca} text{cw}
text{EE}^2 g text{gpsi} s^3 sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)} Gamma ^2 cos
(theta ) text{mZ}^4+32 text{ca} text{cw} text{EE}^2 g text{gpsi} text{me}^2 s^2 sqrt{s left(-4
text{me}^2+4 text{mpsi}^2+sright)} Gamma ^2 cos (theta ) text{mZ}^4+32 text{ca} text{cw}
text{EE}^2 g text{gpsi} s^4 sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)} cos (theta )
text{mZ}^4-128 text{ca} text{cw} text{EE}^2 g text{gpsi} text{me}^2 s^3 sqrt{s left(-4
text{me}^2+4 text{mpsi}^2+sright)} cos (theta ) text{mZ}^4-8 a text{ca} text{cv} g^2
text{gpsi}^2 s^3 sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)} sqrt{text{mZ}^4+left(Gamma
^2-2 sright) text{mZ}^2+s^2} cos (theta ) text{mZ}^4+32 a text{ca} text{cv} g^2 text{gpsi}^2
text{me}^2 s^2 sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)} sqrt{text{mZ}^4+left(Gamma
^2-2 sright) text{mZ}^2+s^2} cos (theta ) text{mZ}^4+8 text{ca} text{cw} text{EE}^2 g
text{gpsi} s^6 cos (theta ) text{mZ}^2-32 text{ca} text{cw} text{EE}^2 g text{gpsi} text{me}^2
s^5 cos (theta ) text{mZ}^2-8 text{ca} text{cw} text{EE}^2 g text{gpsi} s^5 sqrt{s left(-4
text{me}^2+4 text{mpsi}^2+sright)} cos (theta ) text{mZ}^2+32 text{ca} text{cw} text{EE}^2 g
text{gpsi} text{me}^2 s^4 sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)} cos (theta )
text{mZ}^2-8 a text{ca} text{cv} g^2 text{gpsi}^2 s^5 sqrt{text{mZ}^4+left(Gamma ^2-2 sright)
text{mZ}^2+s^2} cos (theta ) text{mZ}^2+32 a text{ca} text{cv} g^2 text{gpsi}^2 text{me}^2 s^4
sqrt{text{mZ}^4+left(Gamma ^2-2 sright) text{mZ}^2+s^2} cos (theta ) text{mZ}^2+8 a text{ca}
text{cv} g^2 text{gpsi}^2 s^4 sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)}
sqrt{text{mZ}^4+left(Gamma ^2-2 sright) text{mZ}^2+s^2} cos (theta ) text{mZ}^2-32 a text{ca}
text{cv} g^2 text{gpsi}^2 text{me}^2 s^3 sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)}
sqrt{text{mZ}^4+left(Gamma ^2-2 sright) text{mZ}^2+s^2} cos (theta ) text{mZ}^2right) theta
left(s-4 text{mpsi}^2right)}{256 text{cw}^2 text{mZ}^4 pi ^2 s^3 left(text{mZ}^4+left(Gamma
^2-2 sright) text{mZ}^2+s^2right)^{3/2}}









share|improve this question









New contributor




Sahabub Jahedi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












 f_2=frac{sqrt{frac{s-4 text{mpsi}^2}{s-4 text{me}^2}} left(16 text{ca} text{cw} text{EE}^2 g
text{gpsi} s^2 sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)} cos (theta ) text{mZ}^8-64
text{ca} text{cw} text{EE}^2 g text{gpsi} text{me}^2 s sqrt{s left(-4 text{me}^2+4
text{mpsi}^2+sright)} cos (theta ) text{mZ}^8+8 text{ca} text{cw} text{EE}^2 g text{gpsi} s^4
cos (theta ) text{mZ}^6-32 text{ca} text{cw} text{EE}^2 g text{gpsi} text{me}^2 s^3 cos
(theta ) text{mZ}^6+16 text{ca} text{cw} text{EE}^2 g text{gpsi} s^2 sqrt{s left(-4
text{me}^2+4 text{mpsi}^2+sright)} Gamma ^2 cos (theta ) text{mZ}^6-64 text{ca} text{cw}
text{EE}^2 g text{gpsi} text{me}^2 s sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)} Gamma
^2 cos (theta ) text{mZ}^6-40 text{ca} text{cw} text{EE}^2 g text{gpsi} s^3 sqrt{s left(-4
text{me}^2+4 text{mpsi}^2+sright)} cos (theta ) text{mZ}^6+160 text{ca} text{cw} text{EE}^2 g
text{gpsi} text{me}^2 s^2 sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)} cos (theta )
text{mZ}^6-16 text{ca} text{cw} text{EE}^2 g text{gpsi} s^5 cos (theta ) text{mZ}^4+64
text{ca} text{cw} text{EE}^2 g text{gpsi} text{me}^2 s^4 cos (theta ) text{mZ}^4+8 text{ca}
text{cw} text{EE}^2 g text{gpsi} s^4 Gamma ^2 cos (theta ) text{mZ}^4-32 text{ca} text{cw}
text{EE}^2 g text{gpsi} text{me}^2 s^3 Gamma ^2 cos (theta ) text{mZ}^4-8 text{ca} text{cw}
text{EE}^2 g text{gpsi} s^3 sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)} Gamma ^2 cos
(theta ) text{mZ}^4+32 text{ca} text{cw} text{EE}^2 g text{gpsi} text{me}^2 s^2 sqrt{s left(-4
text{me}^2+4 text{mpsi}^2+sright)} Gamma ^2 cos (theta ) text{mZ}^4+32 text{ca} text{cw}
text{EE}^2 g text{gpsi} s^4 sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)} cos (theta )
text{mZ}^4-128 text{ca} text{cw} text{EE}^2 g text{gpsi} text{me}^2 s^3 sqrt{s left(-4
text{me}^2+4 text{mpsi}^2+sright)} cos (theta ) text{mZ}^4-8 a text{ca} text{cv} g^2
text{gpsi}^2 s^3 sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)} sqrt{text{mZ}^4+left(Gamma
^2-2 sright) text{mZ}^2+s^2} cos (theta ) text{mZ}^4+32 a text{ca} text{cv} g^2 text{gpsi}^2
text{me}^2 s^2 sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)} sqrt{text{mZ}^4+left(Gamma
^2-2 sright) text{mZ}^2+s^2} cos (theta ) text{mZ}^4+8 text{ca} text{cw} text{EE}^2 g
text{gpsi} s^6 cos (theta ) text{mZ}^2-32 text{ca} text{cw} text{EE}^2 g text{gpsi} text{me}^2
s^5 cos (theta ) text{mZ}^2-8 text{ca} text{cw} text{EE}^2 g text{gpsi} s^5 sqrt{s left(-4
text{me}^2+4 text{mpsi}^2+sright)} cos (theta ) text{mZ}^2+32 text{ca} text{cw} text{EE}^2 g
text{gpsi} text{me}^2 s^4 sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)} cos (theta )
text{mZ}^2-8 a text{ca} text{cv} g^2 text{gpsi}^2 s^5 sqrt{text{mZ}^4+left(Gamma ^2-2 sright)
text{mZ}^2+s^2} cos (theta ) text{mZ}^2+32 a text{ca} text{cv} g^2 text{gpsi}^2 text{me}^2 s^4
sqrt{text{mZ}^4+left(Gamma ^2-2 sright) text{mZ}^2+s^2} cos (theta ) text{mZ}^2+8 a text{ca}
text{cv} g^2 text{gpsi}^2 s^4 sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)}
sqrt{text{mZ}^4+left(Gamma ^2-2 sright) text{mZ}^2+s^2} cos (theta ) text{mZ}^2-32 a text{ca}
text{cv} g^2 text{gpsi}^2 text{me}^2 s^3 sqrt{s left(-4 text{me}^2+4 text{mpsi}^2+sright)}
sqrt{text{mZ}^4+left(Gamma ^2-2 sright) text{mZ}^2+s^2} cos (theta ) text{mZ}^2right) theta
left(s-4 text{mpsi}^2right)}{256 text{cw}^2 text{mZ}^4 pi ^2 s^3 left(text{mZ}^4+left(Gamma
^2-2 sright) text{mZ}^2+s^2right)^{3/2}}






equations






share|improve this question









New contributor




Sahabub Jahedi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question









New contributor




Sahabub Jahedi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question








edited 2 hours ago









Phelype Oleinik

25.2k54690




25.2k54690






New contributor




Sahabub Jahedi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 2 hours ago









Sahabub JahediSahabub Jahedi

111




111




New contributor




Sahabub Jahedi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Sahabub Jahedi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Sahabub Jahedi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








  • 6





    Let me guess: This was generated by some computer algebra system, Maple perhaps?

    – Harald Hanche-Olsen
    2 hours ago






  • 2





    I don't think breaking the equation into separate lines will help with the readability. It's a mess. Go back to maple and try to find a better output. Or start by finding where the fraction switches, and print the numerator and denominator separately.

    – Teepeemm
    1 hour ago














  • 6





    Let me guess: This was generated by some computer algebra system, Maple perhaps?

    – Harald Hanche-Olsen
    2 hours ago






  • 2





    I don't think breaking the equation into separate lines will help with the readability. It's a mess. Go back to maple and try to find a better output. Or start by finding where the fraction switches, and print the numerator and denominator separately.

    – Teepeemm
    1 hour ago








6




6





Let me guess: This was generated by some computer algebra system, Maple perhaps?

– Harald Hanche-Olsen
2 hours ago





Let me guess: This was generated by some computer algebra system, Maple perhaps?

– Harald Hanche-Olsen
2 hours ago




2




2





I don't think breaking the equation into separate lines will help with the readability. It's a mess. Go back to maple and try to find a better output. Or start by finding where the fraction switches, and print the numerator and denominator separately.

– Teepeemm
1 hour ago





I don't think breaking the equation into separate lines will help with the readability. It's a mess. Go back to maple and try to find a better output. Or start by finding where the fraction switches, and print the numerator and denominator separately.

– Teepeemm
1 hour ago










2 Answers
2






active

oldest

votes


















3














First, the source needs to be broken up inserting line breaks at suitable places so you can get some idea of the total structure of the formula. An editor that will show you matching parentheses and highlight text according to chosen patterns is a great help here.



It turns out that the formula is a fraction in which most of the text is a parenthesised expression in the denumerator. That needs to be taken out, named, and typeset explicitly. I chose to call this expression Ξ.



Also, there are lots of unnecessary leftright pairs. I deleted those. Further, I replaced text by the more appropriate mathrm. I ended up with the following code. It's a complete, compilable latex document. It still has multiple issues that need to be dealt with before you have a readable output. Most importantly, all the multicharacter variable names need some spacing around them. Use , for that.



documentclass{article}
usepackage{mathtools,amsfonts}
allowdisplaybreaks[1]
begin{document}
begin{equation}
f_2=frac{
sqrt{frac{s-4 mathrm{mpsi}^2}{s-4 mathrm{me}^2}}
Xi theta (s-4 mathrm{mpsi}^2)}
{256 mathrm{cw}^2 mathrm{mZ}^4 pi ^2 s^3
(mathrm{mZ}^4
+(Gamma ^2-2 s) mathrm{mZ}^2+s^2)^{3/2}}
end{equation}
where
begin{align*}
Xi&=16 mathrm{ca} mathrm{cw} mathrm{EE}^2 g
mathrm{gpsi} s^2
sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
cos (theta ) mathrm{mZ}^8
\&
-64 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} mathrm{me}^2 s
sqrt{s (-4 mathrm{me}^2 +4 mathrm{mpsi}^2+s)} cos (theta ) mathrm{mZ}^8
+8 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} s^4
cos (theta ) mathrm{mZ}^6
\&
-32 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} mathrm{me}^2 s^3 cos
(theta ) mathrm{mZ}^6
\&
+16 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} s^2
sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
Gamma ^2 cos (theta ) mathrm{mZ}^6
\&
-64 mathrm{ca} mathrm{cw}
mathrm{EE}^2 g mathrm{gpsi} mathrm{me}^2 s
sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
Gamma ^2 cos (theta ) mathrm{mZ}^6
\&
-40 mathrm{ca} mathrm{cw} mathrm{EE}^2
g mathrm{gpsi} s^3
sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
cos (theta ) mathrm{mZ}^6
\&
+160 mathrm{ca} mathrm{cw} mathrm{EE}^2 g
mathrm{gpsi} mathrm{me}^2 s^2
sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)} cos (theta )
mathrm{mZ}^6
\&
-16 mathrm{ca} mathrm{cw} mathrm{EE}^2
g mathrm{gpsi} s^5 cos (theta ) mathrm{mZ}^4
\&
+64 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} mathrm{me}^2 s^4
cos (theta ) mathrm{mZ}^4
\&
+8 mathrm{ca}
mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} s^4 Gamma ^2 cos (theta ) mathrm{mZ}^4
\&
-32 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} mathrm{me}^2
s^3 Gamma ^2 cos (theta ) mathrm{mZ}^4
\&
-8 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} s^3
sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
Gamma ^2 cos (theta ) mathrm{mZ}^4
\&
+32 mathrm{ca} mathrm{cw} mathrm{EE}^2
g mathrm{gpsi} mathrm{me}^2 s^2
sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
Gamma ^2 cos (theta ) mathrm{mZ}^4
\&
+32 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} s^4
sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
cos (theta ) mathrm{mZ}^4
\&
-128 mathrm{ca} mathrm{cw} mathrm{EE}^2
g mathrm{gpsi} mathrm{me}^2 s^3
sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
cos (theta ) mathrm{mZ}^4
\&
-8 a mathrm{ca} mathrm{cv} g^2 mathrm{gpsi}^2 s^3
sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
sqrt{mathrm{mZ}^4+(Gamma ^2-2 s) mathrm{mZ}^2+s^2}
cos (theta ) mathrm{mZ}^4
\&
+32 a mathrm{ca} mathrm{cv} g^2 mathrm{gpsi}^2
mathrm{me}^2 s^2
sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
sqrt{mathrm{mZ}^4+(Gamma ^2-2 s) mathrm{mZ}^2+s^2}
cos (theta ) mathrm{mZ}^4
\&
+8 mathrm{ca} mathrm{cw} mathrm{EE}^2 g
mathrm{gpsi} s^6 cos (theta ) mathrm{mZ}^2
-32 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} mathrm{me}^2
s^5 cos (theta ) mathrm{mZ}^2
\&
-8 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} s^5
sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
cos (theta ) mathrm{mZ}^2
\&
+32 mathrm{ca} mathrm{cw} mathrm{EE}^2 g
mathrm{gpsi} mathrm{me}^2 s^4
sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)} cos (theta )
mathrm{mZ}^2
\&
-8 a mathrm{ca} mathrm{cv} g^2 mathrm{gpsi}^2 s^5
sqrt{mathrm{mZ}^4+(Gamma ^2-2 s)
mathrm{mZ}^2+s^2} cos (theta ) mathrm{mZ}^2
\&
+32 a mathrm{ca} mathrm{cv} g^2 mathrm{gpsi}^2 mathrm{me}^2 s^4
sqrt{mathrm{mZ}^4+(Gamma ^2-2 s) mathrm{mZ}^2+s^2}
cos (theta ) mathrm{mZ}^2
\&
+8 a mathrm{ca}
mathrm{cv} g^2 mathrm{gpsi}^2 s^4
sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
sqrt{mathrm{mZ}^4+(Gamma ^2-2 s) mathrm{mZ}^2+s^2}
cos (theta ) mathrm{mZ}^2
\&
-32 a mathrm{ca}
mathrm{cv} g^2 mathrm{gpsi}^2 mathrm{me}^2 s^3
sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
sqrt{mathrm{mZ}^4+(Gamma ^2-2 s) mathrm{mZ}^2+s^2}
cos (theta ) mathrm{mZ}^2
end{align*}
end{document}





share|improve this answer































    2














    There are a lot of repeated items in your equation. I suggest you do something like this, which eliminates all left and right sizing directives.



    enter image description here



    documentclass{article}
    usepackage{mathtools}
    newcommandvn[1]{mathrm{,#1}}
    allowdisplaybreaks
    begin{document}
    noindent
    Put
    $psi=sqrt{smash[b]{s (-4 vn{me}^2+4 vn{mpsi}^2+s)}}$,
    $phi=sqrt{smash[b]{vn{mZ}^4 +(Gamma^2-2 s) vn{mZ}^2+s^2}}$,
    $kappa= vn{ca} vn{cw} vn{EE}^2, g vn{gpsi}$, and
    $lambda=vn{ca} vn{cv}, g^2 vn{gpsi}^2$.
    Then
    begin{align*}
    f_2 &=ucdot v/w, \
    shortintertext{where}
    u &= sqrt{frac{s-4 vn{mpsi}^2}{s-4 vn{me}^2}},,\
    v &=begin{aligned}[t]bigl[
    &16 kappa s^2 psi costheta vn{mZ}^8
    \&-64 kappa vn{me}^2 s psi costheta vn{mZ}^8
    \&+8 kappa s^4costheta vn{mZ}^6
    \&-32 kappa vn{me}^2 s^3 costheta vn{mZ}^6
    \&+16 kappa s^2 psi Gamma^2 costheta vn{mZ}^6
    \&-64 kappa vn{me}^2 s psi Gamma^2 costheta vn{mZ}^6
    \&-40 kappa s^3 psi costheta vn{mZ}^6
    \&+160kappa vn{me}^2 s^2 psi costheta vn{mZ}^6
    \&-16 kappa s^5 costheta vn{mZ}^4
    \&+64 kappa vn{me}^2 s^4 costheta vn{mZ}^4
    \&+8 kappa s^4 Gamma^2 costheta vn{mZ}^4
    \&-32 kappa vn{me}^2 s^3 Gamma^2 costheta vn{mZ}^4
    \&-8 kappa s^3 psi Gamma^2 costheta vn{mZ}^4
    \&+32 kappa vn{me}^2 s^2 psi Gamma^2 costheta vn{mZ}^4
    \&+32 kappa s^4 psi costheta vn{mZ}^4
    \&-128kappa vn{me}^2 s^3 psi costheta vn{mZ}^4
    \&+8 kappa s^6 costheta vn{mZ}^2
    \&-32 kappa vn{me}^2 s^5 costheta vn{mZ}^2
    \&-8 kappa s^5 psi costheta vn{mZ}^2
    \&+32 kappa vn{me}^2 s^4 psi costheta vn{mZ}^2
    \&-8 alambda s^3 psi phi costheta vn{mZ}^4
    \&+32alambda vn{me}^2 s^2 psi phi costheta vn{mZ}^4
    \&-8 alambda s^5 phi costheta vn{mZ}^2
    \&+32alambda vn{me}^2 s^4 psi costheta vn{mZ}^2
    \&+8 alambda s^4 psi phi costheta vn{mZ}^2
    \&-32alambda vn{me}^2 s^3 psi phi costheta vn{mZ}^2bigr]
    theta(s-4 vn{mpsi}^2)
    end{aligned}\
    shortintertext{and}
    w &=256 vn{cw}^2 vn{mZ}^4 pi^2 s^3 phi^3.
    end{align*}
    end{document}





    share|improve this answer
























      Your Answer








      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "85"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });






      Sahabub Jahedi is a new contributor. Be nice, and check out our Code of Conduct.










      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f484702%2fi-could-not-break-this-equation-please-help-me%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3














      First, the source needs to be broken up inserting line breaks at suitable places so you can get some idea of the total structure of the formula. An editor that will show you matching parentheses and highlight text according to chosen patterns is a great help here.



      It turns out that the formula is a fraction in which most of the text is a parenthesised expression in the denumerator. That needs to be taken out, named, and typeset explicitly. I chose to call this expression Ξ.



      Also, there are lots of unnecessary leftright pairs. I deleted those. Further, I replaced text by the more appropriate mathrm. I ended up with the following code. It's a complete, compilable latex document. It still has multiple issues that need to be dealt with before you have a readable output. Most importantly, all the multicharacter variable names need some spacing around them. Use , for that.



      documentclass{article}
      usepackage{mathtools,amsfonts}
      allowdisplaybreaks[1]
      begin{document}
      begin{equation}
      f_2=frac{
      sqrt{frac{s-4 mathrm{mpsi}^2}{s-4 mathrm{me}^2}}
      Xi theta (s-4 mathrm{mpsi}^2)}
      {256 mathrm{cw}^2 mathrm{mZ}^4 pi ^2 s^3
      (mathrm{mZ}^4
      +(Gamma ^2-2 s) mathrm{mZ}^2+s^2)^{3/2}}
      end{equation}
      where
      begin{align*}
      Xi&=16 mathrm{ca} mathrm{cw} mathrm{EE}^2 g
      mathrm{gpsi} s^2
      sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
      cos (theta ) mathrm{mZ}^8
      \&
      -64 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} mathrm{me}^2 s
      sqrt{s (-4 mathrm{me}^2 +4 mathrm{mpsi}^2+s)} cos (theta ) mathrm{mZ}^8
      +8 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} s^4
      cos (theta ) mathrm{mZ}^6
      \&
      -32 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} mathrm{me}^2 s^3 cos
      (theta ) mathrm{mZ}^6
      \&
      +16 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} s^2
      sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
      Gamma ^2 cos (theta ) mathrm{mZ}^6
      \&
      -64 mathrm{ca} mathrm{cw}
      mathrm{EE}^2 g mathrm{gpsi} mathrm{me}^2 s
      sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
      Gamma ^2 cos (theta ) mathrm{mZ}^6
      \&
      -40 mathrm{ca} mathrm{cw} mathrm{EE}^2
      g mathrm{gpsi} s^3
      sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
      cos (theta ) mathrm{mZ}^6
      \&
      +160 mathrm{ca} mathrm{cw} mathrm{EE}^2 g
      mathrm{gpsi} mathrm{me}^2 s^2
      sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)} cos (theta )
      mathrm{mZ}^6
      \&
      -16 mathrm{ca} mathrm{cw} mathrm{EE}^2
      g mathrm{gpsi} s^5 cos (theta ) mathrm{mZ}^4
      \&
      +64 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} mathrm{me}^2 s^4
      cos (theta ) mathrm{mZ}^4
      \&
      +8 mathrm{ca}
      mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} s^4 Gamma ^2 cos (theta ) mathrm{mZ}^4
      \&
      -32 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} mathrm{me}^2
      s^3 Gamma ^2 cos (theta ) mathrm{mZ}^4
      \&
      -8 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} s^3
      sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
      Gamma ^2 cos (theta ) mathrm{mZ}^4
      \&
      +32 mathrm{ca} mathrm{cw} mathrm{EE}^2
      g mathrm{gpsi} mathrm{me}^2 s^2
      sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
      Gamma ^2 cos (theta ) mathrm{mZ}^4
      \&
      +32 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} s^4
      sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
      cos (theta ) mathrm{mZ}^4
      \&
      -128 mathrm{ca} mathrm{cw} mathrm{EE}^2
      g mathrm{gpsi} mathrm{me}^2 s^3
      sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
      cos (theta ) mathrm{mZ}^4
      \&
      -8 a mathrm{ca} mathrm{cv} g^2 mathrm{gpsi}^2 s^3
      sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
      sqrt{mathrm{mZ}^4+(Gamma ^2-2 s) mathrm{mZ}^2+s^2}
      cos (theta ) mathrm{mZ}^4
      \&
      +32 a mathrm{ca} mathrm{cv} g^2 mathrm{gpsi}^2
      mathrm{me}^2 s^2
      sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
      sqrt{mathrm{mZ}^4+(Gamma ^2-2 s) mathrm{mZ}^2+s^2}
      cos (theta ) mathrm{mZ}^4
      \&
      +8 mathrm{ca} mathrm{cw} mathrm{EE}^2 g
      mathrm{gpsi} s^6 cos (theta ) mathrm{mZ}^2
      -32 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} mathrm{me}^2
      s^5 cos (theta ) mathrm{mZ}^2
      \&
      -8 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} s^5
      sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
      cos (theta ) mathrm{mZ}^2
      \&
      +32 mathrm{ca} mathrm{cw} mathrm{EE}^2 g
      mathrm{gpsi} mathrm{me}^2 s^4
      sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)} cos (theta )
      mathrm{mZ}^2
      \&
      -8 a mathrm{ca} mathrm{cv} g^2 mathrm{gpsi}^2 s^5
      sqrt{mathrm{mZ}^4+(Gamma ^2-2 s)
      mathrm{mZ}^2+s^2} cos (theta ) mathrm{mZ}^2
      \&
      +32 a mathrm{ca} mathrm{cv} g^2 mathrm{gpsi}^2 mathrm{me}^2 s^4
      sqrt{mathrm{mZ}^4+(Gamma ^2-2 s) mathrm{mZ}^2+s^2}
      cos (theta ) mathrm{mZ}^2
      \&
      +8 a mathrm{ca}
      mathrm{cv} g^2 mathrm{gpsi}^2 s^4
      sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
      sqrt{mathrm{mZ}^4+(Gamma ^2-2 s) mathrm{mZ}^2+s^2}
      cos (theta ) mathrm{mZ}^2
      \&
      -32 a mathrm{ca}
      mathrm{cv} g^2 mathrm{gpsi}^2 mathrm{me}^2 s^3
      sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
      sqrt{mathrm{mZ}^4+(Gamma ^2-2 s) mathrm{mZ}^2+s^2}
      cos (theta ) mathrm{mZ}^2
      end{align*}
      end{document}





      share|improve this answer




























        3














        First, the source needs to be broken up inserting line breaks at suitable places so you can get some idea of the total structure of the formula. An editor that will show you matching parentheses and highlight text according to chosen patterns is a great help here.



        It turns out that the formula is a fraction in which most of the text is a parenthesised expression in the denumerator. That needs to be taken out, named, and typeset explicitly. I chose to call this expression Ξ.



        Also, there are lots of unnecessary leftright pairs. I deleted those. Further, I replaced text by the more appropriate mathrm. I ended up with the following code. It's a complete, compilable latex document. It still has multiple issues that need to be dealt with before you have a readable output. Most importantly, all the multicharacter variable names need some spacing around them. Use , for that.



        documentclass{article}
        usepackage{mathtools,amsfonts}
        allowdisplaybreaks[1]
        begin{document}
        begin{equation}
        f_2=frac{
        sqrt{frac{s-4 mathrm{mpsi}^2}{s-4 mathrm{me}^2}}
        Xi theta (s-4 mathrm{mpsi}^2)}
        {256 mathrm{cw}^2 mathrm{mZ}^4 pi ^2 s^3
        (mathrm{mZ}^4
        +(Gamma ^2-2 s) mathrm{mZ}^2+s^2)^{3/2}}
        end{equation}
        where
        begin{align*}
        Xi&=16 mathrm{ca} mathrm{cw} mathrm{EE}^2 g
        mathrm{gpsi} s^2
        sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
        cos (theta ) mathrm{mZ}^8
        \&
        -64 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} mathrm{me}^2 s
        sqrt{s (-4 mathrm{me}^2 +4 mathrm{mpsi}^2+s)} cos (theta ) mathrm{mZ}^8
        +8 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} s^4
        cos (theta ) mathrm{mZ}^6
        \&
        -32 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} mathrm{me}^2 s^3 cos
        (theta ) mathrm{mZ}^6
        \&
        +16 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} s^2
        sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
        Gamma ^2 cos (theta ) mathrm{mZ}^6
        \&
        -64 mathrm{ca} mathrm{cw}
        mathrm{EE}^2 g mathrm{gpsi} mathrm{me}^2 s
        sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
        Gamma ^2 cos (theta ) mathrm{mZ}^6
        \&
        -40 mathrm{ca} mathrm{cw} mathrm{EE}^2
        g mathrm{gpsi} s^3
        sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
        cos (theta ) mathrm{mZ}^6
        \&
        +160 mathrm{ca} mathrm{cw} mathrm{EE}^2 g
        mathrm{gpsi} mathrm{me}^2 s^2
        sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)} cos (theta )
        mathrm{mZ}^6
        \&
        -16 mathrm{ca} mathrm{cw} mathrm{EE}^2
        g mathrm{gpsi} s^5 cos (theta ) mathrm{mZ}^4
        \&
        +64 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} mathrm{me}^2 s^4
        cos (theta ) mathrm{mZ}^4
        \&
        +8 mathrm{ca}
        mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} s^4 Gamma ^2 cos (theta ) mathrm{mZ}^4
        \&
        -32 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} mathrm{me}^2
        s^3 Gamma ^2 cos (theta ) mathrm{mZ}^4
        \&
        -8 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} s^3
        sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
        Gamma ^2 cos (theta ) mathrm{mZ}^4
        \&
        +32 mathrm{ca} mathrm{cw} mathrm{EE}^2
        g mathrm{gpsi} mathrm{me}^2 s^2
        sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
        Gamma ^2 cos (theta ) mathrm{mZ}^4
        \&
        +32 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} s^4
        sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
        cos (theta ) mathrm{mZ}^4
        \&
        -128 mathrm{ca} mathrm{cw} mathrm{EE}^2
        g mathrm{gpsi} mathrm{me}^2 s^3
        sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
        cos (theta ) mathrm{mZ}^4
        \&
        -8 a mathrm{ca} mathrm{cv} g^2 mathrm{gpsi}^2 s^3
        sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
        sqrt{mathrm{mZ}^4+(Gamma ^2-2 s) mathrm{mZ}^2+s^2}
        cos (theta ) mathrm{mZ}^4
        \&
        +32 a mathrm{ca} mathrm{cv} g^2 mathrm{gpsi}^2
        mathrm{me}^2 s^2
        sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
        sqrt{mathrm{mZ}^4+(Gamma ^2-2 s) mathrm{mZ}^2+s^2}
        cos (theta ) mathrm{mZ}^4
        \&
        +8 mathrm{ca} mathrm{cw} mathrm{EE}^2 g
        mathrm{gpsi} s^6 cos (theta ) mathrm{mZ}^2
        -32 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} mathrm{me}^2
        s^5 cos (theta ) mathrm{mZ}^2
        \&
        -8 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} s^5
        sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
        cos (theta ) mathrm{mZ}^2
        \&
        +32 mathrm{ca} mathrm{cw} mathrm{EE}^2 g
        mathrm{gpsi} mathrm{me}^2 s^4
        sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)} cos (theta )
        mathrm{mZ}^2
        \&
        -8 a mathrm{ca} mathrm{cv} g^2 mathrm{gpsi}^2 s^5
        sqrt{mathrm{mZ}^4+(Gamma ^2-2 s)
        mathrm{mZ}^2+s^2} cos (theta ) mathrm{mZ}^2
        \&
        +32 a mathrm{ca} mathrm{cv} g^2 mathrm{gpsi}^2 mathrm{me}^2 s^4
        sqrt{mathrm{mZ}^4+(Gamma ^2-2 s) mathrm{mZ}^2+s^2}
        cos (theta ) mathrm{mZ}^2
        \&
        +8 a mathrm{ca}
        mathrm{cv} g^2 mathrm{gpsi}^2 s^4
        sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
        sqrt{mathrm{mZ}^4+(Gamma ^2-2 s) mathrm{mZ}^2+s^2}
        cos (theta ) mathrm{mZ}^2
        \&
        -32 a mathrm{ca}
        mathrm{cv} g^2 mathrm{gpsi}^2 mathrm{me}^2 s^3
        sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
        sqrt{mathrm{mZ}^4+(Gamma ^2-2 s) mathrm{mZ}^2+s^2}
        cos (theta ) mathrm{mZ}^2
        end{align*}
        end{document}





        share|improve this answer


























          3












          3








          3







          First, the source needs to be broken up inserting line breaks at suitable places so you can get some idea of the total structure of the formula. An editor that will show you matching parentheses and highlight text according to chosen patterns is a great help here.



          It turns out that the formula is a fraction in which most of the text is a parenthesised expression in the denumerator. That needs to be taken out, named, and typeset explicitly. I chose to call this expression Ξ.



          Also, there are lots of unnecessary leftright pairs. I deleted those. Further, I replaced text by the more appropriate mathrm. I ended up with the following code. It's a complete, compilable latex document. It still has multiple issues that need to be dealt with before you have a readable output. Most importantly, all the multicharacter variable names need some spacing around them. Use , for that.



          documentclass{article}
          usepackage{mathtools,amsfonts}
          allowdisplaybreaks[1]
          begin{document}
          begin{equation}
          f_2=frac{
          sqrt{frac{s-4 mathrm{mpsi}^2}{s-4 mathrm{me}^2}}
          Xi theta (s-4 mathrm{mpsi}^2)}
          {256 mathrm{cw}^2 mathrm{mZ}^4 pi ^2 s^3
          (mathrm{mZ}^4
          +(Gamma ^2-2 s) mathrm{mZ}^2+s^2)^{3/2}}
          end{equation}
          where
          begin{align*}
          Xi&=16 mathrm{ca} mathrm{cw} mathrm{EE}^2 g
          mathrm{gpsi} s^2
          sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
          cos (theta ) mathrm{mZ}^8
          \&
          -64 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} mathrm{me}^2 s
          sqrt{s (-4 mathrm{me}^2 +4 mathrm{mpsi}^2+s)} cos (theta ) mathrm{mZ}^8
          +8 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} s^4
          cos (theta ) mathrm{mZ}^6
          \&
          -32 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} mathrm{me}^2 s^3 cos
          (theta ) mathrm{mZ}^6
          \&
          +16 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} s^2
          sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
          Gamma ^2 cos (theta ) mathrm{mZ}^6
          \&
          -64 mathrm{ca} mathrm{cw}
          mathrm{EE}^2 g mathrm{gpsi} mathrm{me}^2 s
          sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
          Gamma ^2 cos (theta ) mathrm{mZ}^6
          \&
          -40 mathrm{ca} mathrm{cw} mathrm{EE}^2
          g mathrm{gpsi} s^3
          sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
          cos (theta ) mathrm{mZ}^6
          \&
          +160 mathrm{ca} mathrm{cw} mathrm{EE}^2 g
          mathrm{gpsi} mathrm{me}^2 s^2
          sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)} cos (theta )
          mathrm{mZ}^6
          \&
          -16 mathrm{ca} mathrm{cw} mathrm{EE}^2
          g mathrm{gpsi} s^5 cos (theta ) mathrm{mZ}^4
          \&
          +64 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} mathrm{me}^2 s^4
          cos (theta ) mathrm{mZ}^4
          \&
          +8 mathrm{ca}
          mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} s^4 Gamma ^2 cos (theta ) mathrm{mZ}^4
          \&
          -32 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} mathrm{me}^2
          s^3 Gamma ^2 cos (theta ) mathrm{mZ}^4
          \&
          -8 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} s^3
          sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
          Gamma ^2 cos (theta ) mathrm{mZ}^4
          \&
          +32 mathrm{ca} mathrm{cw} mathrm{EE}^2
          g mathrm{gpsi} mathrm{me}^2 s^2
          sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
          Gamma ^2 cos (theta ) mathrm{mZ}^4
          \&
          +32 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} s^4
          sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
          cos (theta ) mathrm{mZ}^4
          \&
          -128 mathrm{ca} mathrm{cw} mathrm{EE}^2
          g mathrm{gpsi} mathrm{me}^2 s^3
          sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
          cos (theta ) mathrm{mZ}^4
          \&
          -8 a mathrm{ca} mathrm{cv} g^2 mathrm{gpsi}^2 s^3
          sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
          sqrt{mathrm{mZ}^4+(Gamma ^2-2 s) mathrm{mZ}^2+s^2}
          cos (theta ) mathrm{mZ}^4
          \&
          +32 a mathrm{ca} mathrm{cv} g^2 mathrm{gpsi}^2
          mathrm{me}^2 s^2
          sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
          sqrt{mathrm{mZ}^4+(Gamma ^2-2 s) mathrm{mZ}^2+s^2}
          cos (theta ) mathrm{mZ}^4
          \&
          +8 mathrm{ca} mathrm{cw} mathrm{EE}^2 g
          mathrm{gpsi} s^6 cos (theta ) mathrm{mZ}^2
          -32 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} mathrm{me}^2
          s^5 cos (theta ) mathrm{mZ}^2
          \&
          -8 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} s^5
          sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
          cos (theta ) mathrm{mZ}^2
          \&
          +32 mathrm{ca} mathrm{cw} mathrm{EE}^2 g
          mathrm{gpsi} mathrm{me}^2 s^4
          sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)} cos (theta )
          mathrm{mZ}^2
          \&
          -8 a mathrm{ca} mathrm{cv} g^2 mathrm{gpsi}^2 s^5
          sqrt{mathrm{mZ}^4+(Gamma ^2-2 s)
          mathrm{mZ}^2+s^2} cos (theta ) mathrm{mZ}^2
          \&
          +32 a mathrm{ca} mathrm{cv} g^2 mathrm{gpsi}^2 mathrm{me}^2 s^4
          sqrt{mathrm{mZ}^4+(Gamma ^2-2 s) mathrm{mZ}^2+s^2}
          cos (theta ) mathrm{mZ}^2
          \&
          +8 a mathrm{ca}
          mathrm{cv} g^2 mathrm{gpsi}^2 s^4
          sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
          sqrt{mathrm{mZ}^4+(Gamma ^2-2 s) mathrm{mZ}^2+s^2}
          cos (theta ) mathrm{mZ}^2
          \&
          -32 a mathrm{ca}
          mathrm{cv} g^2 mathrm{gpsi}^2 mathrm{me}^2 s^3
          sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
          sqrt{mathrm{mZ}^4+(Gamma ^2-2 s) mathrm{mZ}^2+s^2}
          cos (theta ) mathrm{mZ}^2
          end{align*}
          end{document}





          share|improve this answer













          First, the source needs to be broken up inserting line breaks at suitable places so you can get some idea of the total structure of the formula. An editor that will show you matching parentheses and highlight text according to chosen patterns is a great help here.



          It turns out that the formula is a fraction in which most of the text is a parenthesised expression in the denumerator. That needs to be taken out, named, and typeset explicitly. I chose to call this expression Ξ.



          Also, there are lots of unnecessary leftright pairs. I deleted those. Further, I replaced text by the more appropriate mathrm. I ended up with the following code. It's a complete, compilable latex document. It still has multiple issues that need to be dealt with before you have a readable output. Most importantly, all the multicharacter variable names need some spacing around them. Use , for that.



          documentclass{article}
          usepackage{mathtools,amsfonts}
          allowdisplaybreaks[1]
          begin{document}
          begin{equation}
          f_2=frac{
          sqrt{frac{s-4 mathrm{mpsi}^2}{s-4 mathrm{me}^2}}
          Xi theta (s-4 mathrm{mpsi}^2)}
          {256 mathrm{cw}^2 mathrm{mZ}^4 pi ^2 s^3
          (mathrm{mZ}^4
          +(Gamma ^2-2 s) mathrm{mZ}^2+s^2)^{3/2}}
          end{equation}
          where
          begin{align*}
          Xi&=16 mathrm{ca} mathrm{cw} mathrm{EE}^2 g
          mathrm{gpsi} s^2
          sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
          cos (theta ) mathrm{mZ}^8
          \&
          -64 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} mathrm{me}^2 s
          sqrt{s (-4 mathrm{me}^2 +4 mathrm{mpsi}^2+s)} cos (theta ) mathrm{mZ}^8
          +8 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} s^4
          cos (theta ) mathrm{mZ}^6
          \&
          -32 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} mathrm{me}^2 s^3 cos
          (theta ) mathrm{mZ}^6
          \&
          +16 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} s^2
          sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
          Gamma ^2 cos (theta ) mathrm{mZ}^6
          \&
          -64 mathrm{ca} mathrm{cw}
          mathrm{EE}^2 g mathrm{gpsi} mathrm{me}^2 s
          sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
          Gamma ^2 cos (theta ) mathrm{mZ}^6
          \&
          -40 mathrm{ca} mathrm{cw} mathrm{EE}^2
          g mathrm{gpsi} s^3
          sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
          cos (theta ) mathrm{mZ}^6
          \&
          +160 mathrm{ca} mathrm{cw} mathrm{EE}^2 g
          mathrm{gpsi} mathrm{me}^2 s^2
          sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)} cos (theta )
          mathrm{mZ}^6
          \&
          -16 mathrm{ca} mathrm{cw} mathrm{EE}^2
          g mathrm{gpsi} s^5 cos (theta ) mathrm{mZ}^4
          \&
          +64 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} mathrm{me}^2 s^4
          cos (theta ) mathrm{mZ}^4
          \&
          +8 mathrm{ca}
          mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} s^4 Gamma ^2 cos (theta ) mathrm{mZ}^4
          \&
          -32 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} mathrm{me}^2
          s^3 Gamma ^2 cos (theta ) mathrm{mZ}^4
          \&
          -8 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} s^3
          sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
          Gamma ^2 cos (theta ) mathrm{mZ}^4
          \&
          +32 mathrm{ca} mathrm{cw} mathrm{EE}^2
          g mathrm{gpsi} mathrm{me}^2 s^2
          sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
          Gamma ^2 cos (theta ) mathrm{mZ}^4
          \&
          +32 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} s^4
          sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
          cos (theta ) mathrm{mZ}^4
          \&
          -128 mathrm{ca} mathrm{cw} mathrm{EE}^2
          g mathrm{gpsi} mathrm{me}^2 s^3
          sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
          cos (theta ) mathrm{mZ}^4
          \&
          -8 a mathrm{ca} mathrm{cv} g^2 mathrm{gpsi}^2 s^3
          sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
          sqrt{mathrm{mZ}^4+(Gamma ^2-2 s) mathrm{mZ}^2+s^2}
          cos (theta ) mathrm{mZ}^4
          \&
          +32 a mathrm{ca} mathrm{cv} g^2 mathrm{gpsi}^2
          mathrm{me}^2 s^2
          sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
          sqrt{mathrm{mZ}^4+(Gamma ^2-2 s) mathrm{mZ}^2+s^2}
          cos (theta ) mathrm{mZ}^4
          \&
          +8 mathrm{ca} mathrm{cw} mathrm{EE}^2 g
          mathrm{gpsi} s^6 cos (theta ) mathrm{mZ}^2
          -32 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} mathrm{me}^2
          s^5 cos (theta ) mathrm{mZ}^2
          \&
          -8 mathrm{ca} mathrm{cw} mathrm{EE}^2 g mathrm{gpsi} s^5
          sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
          cos (theta ) mathrm{mZ}^2
          \&
          +32 mathrm{ca} mathrm{cw} mathrm{EE}^2 g
          mathrm{gpsi} mathrm{me}^2 s^4
          sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)} cos (theta )
          mathrm{mZ}^2
          \&
          -8 a mathrm{ca} mathrm{cv} g^2 mathrm{gpsi}^2 s^5
          sqrt{mathrm{mZ}^4+(Gamma ^2-2 s)
          mathrm{mZ}^2+s^2} cos (theta ) mathrm{mZ}^2
          \&
          +32 a mathrm{ca} mathrm{cv} g^2 mathrm{gpsi}^2 mathrm{me}^2 s^4
          sqrt{mathrm{mZ}^4+(Gamma ^2-2 s) mathrm{mZ}^2+s^2}
          cos (theta ) mathrm{mZ}^2
          \&
          +8 a mathrm{ca}
          mathrm{cv} g^2 mathrm{gpsi}^2 s^4
          sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
          sqrt{mathrm{mZ}^4+(Gamma ^2-2 s) mathrm{mZ}^2+s^2}
          cos (theta ) mathrm{mZ}^2
          \&
          -32 a mathrm{ca}
          mathrm{cv} g^2 mathrm{gpsi}^2 mathrm{me}^2 s^3
          sqrt{s (-4 mathrm{me}^2+4 mathrm{mpsi}^2+s)}
          sqrt{mathrm{mZ}^4+(Gamma ^2-2 s) mathrm{mZ}^2+s^2}
          cos (theta ) mathrm{mZ}^2
          end{align*}
          end{document}






          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered 1 hour ago









          Harald Hanche-OlsenHarald Hanche-Olsen

          13.2k24762




          13.2k24762























              2














              There are a lot of repeated items in your equation. I suggest you do something like this, which eliminates all left and right sizing directives.



              enter image description here



              documentclass{article}
              usepackage{mathtools}
              newcommandvn[1]{mathrm{,#1}}
              allowdisplaybreaks
              begin{document}
              noindent
              Put
              $psi=sqrt{smash[b]{s (-4 vn{me}^2+4 vn{mpsi}^2+s)}}$,
              $phi=sqrt{smash[b]{vn{mZ}^4 +(Gamma^2-2 s) vn{mZ}^2+s^2}}$,
              $kappa= vn{ca} vn{cw} vn{EE}^2, g vn{gpsi}$, and
              $lambda=vn{ca} vn{cv}, g^2 vn{gpsi}^2$.
              Then
              begin{align*}
              f_2 &=ucdot v/w, \
              shortintertext{where}
              u &= sqrt{frac{s-4 vn{mpsi}^2}{s-4 vn{me}^2}},,\
              v &=begin{aligned}[t]bigl[
              &16 kappa s^2 psi costheta vn{mZ}^8
              \&-64 kappa vn{me}^2 s psi costheta vn{mZ}^8
              \&+8 kappa s^4costheta vn{mZ}^6
              \&-32 kappa vn{me}^2 s^3 costheta vn{mZ}^6
              \&+16 kappa s^2 psi Gamma^2 costheta vn{mZ}^6
              \&-64 kappa vn{me}^2 s psi Gamma^2 costheta vn{mZ}^6
              \&-40 kappa s^3 psi costheta vn{mZ}^6
              \&+160kappa vn{me}^2 s^2 psi costheta vn{mZ}^6
              \&-16 kappa s^5 costheta vn{mZ}^4
              \&+64 kappa vn{me}^2 s^4 costheta vn{mZ}^4
              \&+8 kappa s^4 Gamma^2 costheta vn{mZ}^4
              \&-32 kappa vn{me}^2 s^3 Gamma^2 costheta vn{mZ}^4
              \&-8 kappa s^3 psi Gamma^2 costheta vn{mZ}^4
              \&+32 kappa vn{me}^2 s^2 psi Gamma^2 costheta vn{mZ}^4
              \&+32 kappa s^4 psi costheta vn{mZ}^4
              \&-128kappa vn{me}^2 s^3 psi costheta vn{mZ}^4
              \&+8 kappa s^6 costheta vn{mZ}^2
              \&-32 kappa vn{me}^2 s^5 costheta vn{mZ}^2
              \&-8 kappa s^5 psi costheta vn{mZ}^2
              \&+32 kappa vn{me}^2 s^4 psi costheta vn{mZ}^2
              \&-8 alambda s^3 psi phi costheta vn{mZ}^4
              \&+32alambda vn{me}^2 s^2 psi phi costheta vn{mZ}^4
              \&-8 alambda s^5 phi costheta vn{mZ}^2
              \&+32alambda vn{me}^2 s^4 psi costheta vn{mZ}^2
              \&+8 alambda s^4 psi phi costheta vn{mZ}^2
              \&-32alambda vn{me}^2 s^3 psi phi costheta vn{mZ}^2bigr]
              theta(s-4 vn{mpsi}^2)
              end{aligned}\
              shortintertext{and}
              w &=256 vn{cw}^2 vn{mZ}^4 pi^2 s^3 phi^3.
              end{align*}
              end{document}





              share|improve this answer




























                2














                There are a lot of repeated items in your equation. I suggest you do something like this, which eliminates all left and right sizing directives.



                enter image description here



                documentclass{article}
                usepackage{mathtools}
                newcommandvn[1]{mathrm{,#1}}
                allowdisplaybreaks
                begin{document}
                noindent
                Put
                $psi=sqrt{smash[b]{s (-4 vn{me}^2+4 vn{mpsi}^2+s)}}$,
                $phi=sqrt{smash[b]{vn{mZ}^4 +(Gamma^2-2 s) vn{mZ}^2+s^2}}$,
                $kappa= vn{ca} vn{cw} vn{EE}^2, g vn{gpsi}$, and
                $lambda=vn{ca} vn{cv}, g^2 vn{gpsi}^2$.
                Then
                begin{align*}
                f_2 &=ucdot v/w, \
                shortintertext{where}
                u &= sqrt{frac{s-4 vn{mpsi}^2}{s-4 vn{me}^2}},,\
                v &=begin{aligned}[t]bigl[
                &16 kappa s^2 psi costheta vn{mZ}^8
                \&-64 kappa vn{me}^2 s psi costheta vn{mZ}^8
                \&+8 kappa s^4costheta vn{mZ}^6
                \&-32 kappa vn{me}^2 s^3 costheta vn{mZ}^6
                \&+16 kappa s^2 psi Gamma^2 costheta vn{mZ}^6
                \&-64 kappa vn{me}^2 s psi Gamma^2 costheta vn{mZ}^6
                \&-40 kappa s^3 psi costheta vn{mZ}^6
                \&+160kappa vn{me}^2 s^2 psi costheta vn{mZ}^6
                \&-16 kappa s^5 costheta vn{mZ}^4
                \&+64 kappa vn{me}^2 s^4 costheta vn{mZ}^4
                \&+8 kappa s^4 Gamma^2 costheta vn{mZ}^4
                \&-32 kappa vn{me}^2 s^3 Gamma^2 costheta vn{mZ}^4
                \&-8 kappa s^3 psi Gamma^2 costheta vn{mZ}^4
                \&+32 kappa vn{me}^2 s^2 psi Gamma^2 costheta vn{mZ}^4
                \&+32 kappa s^4 psi costheta vn{mZ}^4
                \&-128kappa vn{me}^2 s^3 psi costheta vn{mZ}^4
                \&+8 kappa s^6 costheta vn{mZ}^2
                \&-32 kappa vn{me}^2 s^5 costheta vn{mZ}^2
                \&-8 kappa s^5 psi costheta vn{mZ}^2
                \&+32 kappa vn{me}^2 s^4 psi costheta vn{mZ}^2
                \&-8 alambda s^3 psi phi costheta vn{mZ}^4
                \&+32alambda vn{me}^2 s^2 psi phi costheta vn{mZ}^4
                \&-8 alambda s^5 phi costheta vn{mZ}^2
                \&+32alambda vn{me}^2 s^4 psi costheta vn{mZ}^2
                \&+8 alambda s^4 psi phi costheta vn{mZ}^2
                \&-32alambda vn{me}^2 s^3 psi phi costheta vn{mZ}^2bigr]
                theta(s-4 vn{mpsi}^2)
                end{aligned}\
                shortintertext{and}
                w &=256 vn{cw}^2 vn{mZ}^4 pi^2 s^3 phi^3.
                end{align*}
                end{document}





                share|improve this answer


























                  2












                  2








                  2







                  There are a lot of repeated items in your equation. I suggest you do something like this, which eliminates all left and right sizing directives.



                  enter image description here



                  documentclass{article}
                  usepackage{mathtools}
                  newcommandvn[1]{mathrm{,#1}}
                  allowdisplaybreaks
                  begin{document}
                  noindent
                  Put
                  $psi=sqrt{smash[b]{s (-4 vn{me}^2+4 vn{mpsi}^2+s)}}$,
                  $phi=sqrt{smash[b]{vn{mZ}^4 +(Gamma^2-2 s) vn{mZ}^2+s^2}}$,
                  $kappa= vn{ca} vn{cw} vn{EE}^2, g vn{gpsi}$, and
                  $lambda=vn{ca} vn{cv}, g^2 vn{gpsi}^2$.
                  Then
                  begin{align*}
                  f_2 &=ucdot v/w, \
                  shortintertext{where}
                  u &= sqrt{frac{s-4 vn{mpsi}^2}{s-4 vn{me}^2}},,\
                  v &=begin{aligned}[t]bigl[
                  &16 kappa s^2 psi costheta vn{mZ}^8
                  \&-64 kappa vn{me}^2 s psi costheta vn{mZ}^8
                  \&+8 kappa s^4costheta vn{mZ}^6
                  \&-32 kappa vn{me}^2 s^3 costheta vn{mZ}^6
                  \&+16 kappa s^2 psi Gamma^2 costheta vn{mZ}^6
                  \&-64 kappa vn{me}^2 s psi Gamma^2 costheta vn{mZ}^6
                  \&-40 kappa s^3 psi costheta vn{mZ}^6
                  \&+160kappa vn{me}^2 s^2 psi costheta vn{mZ}^6
                  \&-16 kappa s^5 costheta vn{mZ}^4
                  \&+64 kappa vn{me}^2 s^4 costheta vn{mZ}^4
                  \&+8 kappa s^4 Gamma^2 costheta vn{mZ}^4
                  \&-32 kappa vn{me}^2 s^3 Gamma^2 costheta vn{mZ}^4
                  \&-8 kappa s^3 psi Gamma^2 costheta vn{mZ}^4
                  \&+32 kappa vn{me}^2 s^2 psi Gamma^2 costheta vn{mZ}^4
                  \&+32 kappa s^4 psi costheta vn{mZ}^4
                  \&-128kappa vn{me}^2 s^3 psi costheta vn{mZ}^4
                  \&+8 kappa s^6 costheta vn{mZ}^2
                  \&-32 kappa vn{me}^2 s^5 costheta vn{mZ}^2
                  \&-8 kappa s^5 psi costheta vn{mZ}^2
                  \&+32 kappa vn{me}^2 s^4 psi costheta vn{mZ}^2
                  \&-8 alambda s^3 psi phi costheta vn{mZ}^4
                  \&+32alambda vn{me}^2 s^2 psi phi costheta vn{mZ}^4
                  \&-8 alambda s^5 phi costheta vn{mZ}^2
                  \&+32alambda vn{me}^2 s^4 psi costheta vn{mZ}^2
                  \&+8 alambda s^4 psi phi costheta vn{mZ}^2
                  \&-32alambda vn{me}^2 s^3 psi phi costheta vn{mZ}^2bigr]
                  theta(s-4 vn{mpsi}^2)
                  end{aligned}\
                  shortintertext{and}
                  w &=256 vn{cw}^2 vn{mZ}^4 pi^2 s^3 phi^3.
                  end{align*}
                  end{document}





                  share|improve this answer













                  There are a lot of repeated items in your equation. I suggest you do something like this, which eliminates all left and right sizing directives.



                  enter image description here



                  documentclass{article}
                  usepackage{mathtools}
                  newcommandvn[1]{mathrm{,#1}}
                  allowdisplaybreaks
                  begin{document}
                  noindent
                  Put
                  $psi=sqrt{smash[b]{s (-4 vn{me}^2+4 vn{mpsi}^2+s)}}$,
                  $phi=sqrt{smash[b]{vn{mZ}^4 +(Gamma^2-2 s) vn{mZ}^2+s^2}}$,
                  $kappa= vn{ca} vn{cw} vn{EE}^2, g vn{gpsi}$, and
                  $lambda=vn{ca} vn{cv}, g^2 vn{gpsi}^2$.
                  Then
                  begin{align*}
                  f_2 &=ucdot v/w, \
                  shortintertext{where}
                  u &= sqrt{frac{s-4 vn{mpsi}^2}{s-4 vn{me}^2}},,\
                  v &=begin{aligned}[t]bigl[
                  &16 kappa s^2 psi costheta vn{mZ}^8
                  \&-64 kappa vn{me}^2 s psi costheta vn{mZ}^8
                  \&+8 kappa s^4costheta vn{mZ}^6
                  \&-32 kappa vn{me}^2 s^3 costheta vn{mZ}^6
                  \&+16 kappa s^2 psi Gamma^2 costheta vn{mZ}^6
                  \&-64 kappa vn{me}^2 s psi Gamma^2 costheta vn{mZ}^6
                  \&-40 kappa s^3 psi costheta vn{mZ}^6
                  \&+160kappa vn{me}^2 s^2 psi costheta vn{mZ}^6
                  \&-16 kappa s^5 costheta vn{mZ}^4
                  \&+64 kappa vn{me}^2 s^4 costheta vn{mZ}^4
                  \&+8 kappa s^4 Gamma^2 costheta vn{mZ}^4
                  \&-32 kappa vn{me}^2 s^3 Gamma^2 costheta vn{mZ}^4
                  \&-8 kappa s^3 psi Gamma^2 costheta vn{mZ}^4
                  \&+32 kappa vn{me}^2 s^2 psi Gamma^2 costheta vn{mZ}^4
                  \&+32 kappa s^4 psi costheta vn{mZ}^4
                  \&-128kappa vn{me}^2 s^3 psi costheta vn{mZ}^4
                  \&+8 kappa s^6 costheta vn{mZ}^2
                  \&-32 kappa vn{me}^2 s^5 costheta vn{mZ}^2
                  \&-8 kappa s^5 psi costheta vn{mZ}^2
                  \&+32 kappa vn{me}^2 s^4 psi costheta vn{mZ}^2
                  \&-8 alambda s^3 psi phi costheta vn{mZ}^4
                  \&+32alambda vn{me}^2 s^2 psi phi costheta vn{mZ}^4
                  \&-8 alambda s^5 phi costheta vn{mZ}^2
                  \&+32alambda vn{me}^2 s^4 psi costheta vn{mZ}^2
                  \&+8 alambda s^4 psi phi costheta vn{mZ}^2
                  \&-32alambda vn{me}^2 s^3 psi phi costheta vn{mZ}^2bigr]
                  theta(s-4 vn{mpsi}^2)
                  end{aligned}\
                  shortintertext{and}
                  w &=256 vn{cw}^2 vn{mZ}^4 pi^2 s^3 phi^3.
                  end{align*}
                  end{document}






                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered 44 mins ago









                  MicoMico

                  286k32391779




                  286k32391779






















                      Sahabub Jahedi is a new contributor. Be nice, and check out our Code of Conduct.










                      draft saved

                      draft discarded


















                      Sahabub Jahedi is a new contributor. Be nice, and check out our Code of Conduct.













                      Sahabub Jahedi is a new contributor. Be nice, and check out our Code of Conduct.












                      Sahabub Jahedi is a new contributor. Be nice, and check out our Code of Conduct.
















                      Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f484702%2fi-could-not-break-this-equation-please-help-me%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      “%fieldName is a required field.”, in Magento2 REST API Call for GET Method Type The Next...

                      How to change City field to a dropdown in Checkout step Magento 2Magento 2 : How to change UI field(s)...

                      變成蝙蝠會怎樣? 參考資料 外部連結 导航菜单Thomas Nagel, "What is it like to be a...