Slither Like a Snake The 2019 Stack Overflow Developer Survey Results Are In ...

Four Colour Theorem

Road tyres vs "Street" tyres for charity ride on MTB Tandem

I could not break this equation. Please help me

Windows 10: How to Lock (not sleep) laptop on lid close?

"... to apply for a visa" or "... and applied for a visa"?

In horse breeding, what is the female equivalent of putting a horse out "to stud"?

Take groceries in checked luggage

The variadic template constructor of my class cannot modify my class members, why is that so?

What is special about square numbers here?

Is it ethical to upload a automatically generated paper to a non peer-reviewed site as part of a larger research?

Why can't devices on different VLANs, but on the same subnet, communicate?

How to delete random line from file using Unix command?

Typeface like Times New Roman but with "tied" percent sign

What can I do if neighbor is blocking my solar panels intentionally?

What force causes entropy to increase?

Can a novice safely splice in wire to lengthen 5V charging cable?

How do I add random spotting to the same face in cycles?

Am I ethically obligated to go into work on an off day if the reason is sudden?

Wall plug outlet change

Can withdrawing asylum be illegal?

Why can't wing-mounted spoilers be used to steepen approaches?

Simulating Exploding Dice

How are presidential pardons supposed to be used?

Is this wall load bearing? Blueprints and photos attached



Slither Like a Snake



The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)
The PPCG Site design is on its way - help us make it awesome!
Sandbox for Proposed ChallengesRotate the anti-diagonalsRotate every row and column in a matrixRotate every 2x2 block in a matrixZigzagify a MatrixMaximum Maxima!Is it a stochastic matrix?Rotating a 2D MatrixSum of first row and column, then second row and column … and so onProgression of Matrix ColumnsWhere is that snake going?Is the bus load legal?












7












$begingroup$


The Idea



We've done matrix spirals before, and full rotations, and even diagonal
rotations,
but not, as far as I can find, snake rotations!



What is a snake rotation?



Imagine the rows of a matrix snaking back and forth, with dividers between
them like the dividers of long queue:



    +--------------+
1 2 3 4 5|
+------------ |
|10 9 8 7 6|
| +-----------+
|11 12 13 14 15|
+------------ |
20 19 18 17 16|
+--------------+


Now imagine rotating these items by 2. Each item advances, like people moving
in a line, and the items at the end spill out and return to the beginning:



    +--------------+
--> 19 20 1 2 3|
+------------ |
| 8 7 6 5 4|
| +-----------+
| 9 10 11 12 13|
+------------ |
<-- 18 17 16 15 14|
+--------------+


If there are an odd number of rows it will exit from the right, but still wrap
to the beginning. For example, here's a 3 rotation:



    +--------------+
1 2 3 4 5|
+------------ |
|10 9 8 7 6|
| +-----------+
|11 12 13 14 15
+--------------+


+--------------+
--> 13 14 15 1 2|
+------------ |
| 7 6 5 4 3|
| +-----------+
| 8 9 10 11 12 -->
+--------------+


A negative rotation will take you backwards. Here's a -2 rotation:



    +--------------+
<-- 3 4 5 6 7|
+------------ |
|12 11 10 9 8|
| +-----------+
|13 14 15 1 2 <--
+--------------+


The Challenge



Your function or program will take 2 inputs, in any convenient format:




  • A matrix

  • A integer (positive or negative) indicating how many places to rotate it.


It will return:




  • The rotated matrix


Notes:




  • Code golf. Fewest bytes wins.

  • Matrixes need not be square, but will contain at least 2 rows and 2 columns

  • Positive integers will rotate row 1 toward the right

  • Negative integers will rotate row 1 toward the left

  • You may reverse the meaning of positive / negative rotation numbers, if convenient

  • The rotation number can be larger than the number of items. In that case, it
    will wrap. That is, it will be equivalent to the number modulo the number of
    items.

  • The matrix will contain only integers, but it may contain any integers,
    including repeats


Test Cases



Format:




  • Matrix

  • Rotation number

  • Expected return value




4 5
6 7

1

6 4
7 5




2  3  4  5
6 7 8 9
10 11 12 13

-3

5 9 8 7
12 11 10 6
13 2 3 4




8 8 7 7
5 5 6 6

10

5 5 8 8
6 6 7 7









share|improve this question











$endgroup$








  • 1




    $begingroup$
    Reversing meaning of +/- is fine. I think the entrance should stay at the top left though.
    $endgroup$
    – Jonah
    3 hours ago
















7












$begingroup$


The Idea



We've done matrix spirals before, and full rotations, and even diagonal
rotations,
but not, as far as I can find, snake rotations!



What is a snake rotation?



Imagine the rows of a matrix snaking back and forth, with dividers between
them like the dividers of long queue:



    +--------------+
1 2 3 4 5|
+------------ |
|10 9 8 7 6|
| +-----------+
|11 12 13 14 15|
+------------ |
20 19 18 17 16|
+--------------+


Now imagine rotating these items by 2. Each item advances, like people moving
in a line, and the items at the end spill out and return to the beginning:



    +--------------+
--> 19 20 1 2 3|
+------------ |
| 8 7 6 5 4|
| +-----------+
| 9 10 11 12 13|
+------------ |
<-- 18 17 16 15 14|
+--------------+


If there are an odd number of rows it will exit from the right, but still wrap
to the beginning. For example, here's a 3 rotation:



    +--------------+
1 2 3 4 5|
+------------ |
|10 9 8 7 6|
| +-----------+
|11 12 13 14 15
+--------------+


+--------------+
--> 13 14 15 1 2|
+------------ |
| 7 6 5 4 3|
| +-----------+
| 8 9 10 11 12 -->
+--------------+


A negative rotation will take you backwards. Here's a -2 rotation:



    +--------------+
<-- 3 4 5 6 7|
+------------ |
|12 11 10 9 8|
| +-----------+
|13 14 15 1 2 <--
+--------------+


The Challenge



Your function or program will take 2 inputs, in any convenient format:




  • A matrix

  • A integer (positive or negative) indicating how many places to rotate it.


It will return:




  • The rotated matrix


Notes:




  • Code golf. Fewest bytes wins.

  • Matrixes need not be square, but will contain at least 2 rows and 2 columns

  • Positive integers will rotate row 1 toward the right

  • Negative integers will rotate row 1 toward the left

  • You may reverse the meaning of positive / negative rotation numbers, if convenient

  • The rotation number can be larger than the number of items. In that case, it
    will wrap. That is, it will be equivalent to the number modulo the number of
    items.

  • The matrix will contain only integers, but it may contain any integers,
    including repeats


Test Cases



Format:




  • Matrix

  • Rotation number

  • Expected return value




4 5
6 7

1

6 4
7 5




2  3  4  5
6 7 8 9
10 11 12 13

-3

5 9 8 7
12 11 10 6
13 2 3 4




8 8 7 7
5 5 6 6

10

5 5 8 8
6 6 7 7









share|improve this question











$endgroup$








  • 1




    $begingroup$
    Reversing meaning of +/- is fine. I think the entrance should stay at the top left though.
    $endgroup$
    – Jonah
    3 hours ago














7












7








7





$begingroup$


The Idea



We've done matrix spirals before, and full rotations, and even diagonal
rotations,
but not, as far as I can find, snake rotations!



What is a snake rotation?



Imagine the rows of a matrix snaking back and forth, with dividers between
them like the dividers of long queue:



    +--------------+
1 2 3 4 5|
+------------ |
|10 9 8 7 6|
| +-----------+
|11 12 13 14 15|
+------------ |
20 19 18 17 16|
+--------------+


Now imagine rotating these items by 2. Each item advances, like people moving
in a line, and the items at the end spill out and return to the beginning:



    +--------------+
--> 19 20 1 2 3|
+------------ |
| 8 7 6 5 4|
| +-----------+
| 9 10 11 12 13|
+------------ |
<-- 18 17 16 15 14|
+--------------+


If there are an odd number of rows it will exit from the right, but still wrap
to the beginning. For example, here's a 3 rotation:



    +--------------+
1 2 3 4 5|
+------------ |
|10 9 8 7 6|
| +-----------+
|11 12 13 14 15
+--------------+


+--------------+
--> 13 14 15 1 2|
+------------ |
| 7 6 5 4 3|
| +-----------+
| 8 9 10 11 12 -->
+--------------+


A negative rotation will take you backwards. Here's a -2 rotation:



    +--------------+
<-- 3 4 5 6 7|
+------------ |
|12 11 10 9 8|
| +-----------+
|13 14 15 1 2 <--
+--------------+


The Challenge



Your function or program will take 2 inputs, in any convenient format:




  • A matrix

  • A integer (positive or negative) indicating how many places to rotate it.


It will return:




  • The rotated matrix


Notes:




  • Code golf. Fewest bytes wins.

  • Matrixes need not be square, but will contain at least 2 rows and 2 columns

  • Positive integers will rotate row 1 toward the right

  • Negative integers will rotate row 1 toward the left

  • You may reverse the meaning of positive / negative rotation numbers, if convenient

  • The rotation number can be larger than the number of items. In that case, it
    will wrap. That is, it will be equivalent to the number modulo the number of
    items.

  • The matrix will contain only integers, but it may contain any integers,
    including repeats


Test Cases



Format:




  • Matrix

  • Rotation number

  • Expected return value




4 5
6 7

1

6 4
7 5




2  3  4  5
6 7 8 9
10 11 12 13

-3

5 9 8 7
12 11 10 6
13 2 3 4




8 8 7 7
5 5 6 6

10

5 5 8 8
6 6 7 7









share|improve this question











$endgroup$




The Idea



We've done matrix spirals before, and full rotations, and even diagonal
rotations,
but not, as far as I can find, snake rotations!



What is a snake rotation?



Imagine the rows of a matrix snaking back and forth, with dividers between
them like the dividers of long queue:



    +--------------+
1 2 3 4 5|
+------------ |
|10 9 8 7 6|
| +-----------+
|11 12 13 14 15|
+------------ |
20 19 18 17 16|
+--------------+


Now imagine rotating these items by 2. Each item advances, like people moving
in a line, and the items at the end spill out and return to the beginning:



    +--------------+
--> 19 20 1 2 3|
+------------ |
| 8 7 6 5 4|
| +-----------+
| 9 10 11 12 13|
+------------ |
<-- 18 17 16 15 14|
+--------------+


If there are an odd number of rows it will exit from the right, but still wrap
to the beginning. For example, here's a 3 rotation:



    +--------------+
1 2 3 4 5|
+------------ |
|10 9 8 7 6|
| +-----------+
|11 12 13 14 15
+--------------+


+--------------+
--> 13 14 15 1 2|
+------------ |
| 7 6 5 4 3|
| +-----------+
| 8 9 10 11 12 -->
+--------------+


A negative rotation will take you backwards. Here's a -2 rotation:



    +--------------+
<-- 3 4 5 6 7|
+------------ |
|12 11 10 9 8|
| +-----------+
|13 14 15 1 2 <--
+--------------+


The Challenge



Your function or program will take 2 inputs, in any convenient format:




  • A matrix

  • A integer (positive or negative) indicating how many places to rotate it.


It will return:




  • The rotated matrix


Notes:




  • Code golf. Fewest bytes wins.

  • Matrixes need not be square, but will contain at least 2 rows and 2 columns

  • Positive integers will rotate row 1 toward the right

  • Negative integers will rotate row 1 toward the left

  • You may reverse the meaning of positive / negative rotation numbers, if convenient

  • The rotation number can be larger than the number of items. In that case, it
    will wrap. That is, it will be equivalent to the number modulo the number of
    items.

  • The matrix will contain only integers, but it may contain any integers,
    including repeats


Test Cases



Format:




  • Matrix

  • Rotation number

  • Expected return value




4 5
6 7

1

6 4
7 5




2  3  4  5
6 7 8 9
10 11 12 13

-3

5 9 8 7
12 11 10 6
13 2 3 4




8 8 7 7
5 5 6 6

10

5 5 8 8
6 6 7 7






code-golf array-manipulation matrix






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 3 hours ago







Jonah

















asked 5 hours ago









JonahJonah

2,7161017




2,7161017








  • 1




    $begingroup$
    Reversing meaning of +/- is fine. I think the entrance should stay at the top left though.
    $endgroup$
    – Jonah
    3 hours ago














  • 1




    $begingroup$
    Reversing meaning of +/- is fine. I think the entrance should stay at the top left though.
    $endgroup$
    – Jonah
    3 hours ago








1




1




$begingroup$
Reversing meaning of +/- is fine. I think the entrance should stay at the top left though.
$endgroup$
– Jonah
3 hours ago




$begingroup$
Reversing meaning of +/- is fine. I think the entrance should stay at the top left though.
$endgroup$
– Jonah
3 hours ago










1 Answer
1






active

oldest

votes


















1












$begingroup$


Jelly, 10 bytes



UÐeẎṙṁ⁸UÐe


A dyadic Link accepting the marix on the left and the rotation integer on the right (uses the reverse meaning of positive / negative)



Try it online!



How?



UÐeẎṙṁ⁸UÐe - Link: matrix of integers, M; integer, R
Ðe - apply to even indices of M:
U - reverse each
Ẏ - tighten
ṙ - rotate left by R
ṁ - mould like:
⁸ - chain's left argument, M
Ðe - apply to even indices of M:
U - reverse each





share|improve this answer











$endgroup$














    Your Answer






    StackExchange.ifUsing("editor", function () {
    StackExchange.using("externalEditor", function () {
    StackExchange.using("snippets", function () {
    StackExchange.snippets.init();
    });
    });
    }, "code-snippets");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "200"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodegolf.stackexchange.com%2fquestions%2f183153%2fslither-like-a-snake%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$


    Jelly, 10 bytes



    UÐeẎṙṁ⁸UÐe


    A dyadic Link accepting the marix on the left and the rotation integer on the right (uses the reverse meaning of positive / negative)



    Try it online!



    How?



    UÐeẎṙṁ⁸UÐe - Link: matrix of integers, M; integer, R
    Ðe - apply to even indices of M:
    U - reverse each
    Ẏ - tighten
    ṙ - rotate left by R
    ṁ - mould like:
    ⁸ - chain's left argument, M
    Ðe - apply to even indices of M:
    U - reverse each





    share|improve this answer











    $endgroup$


















      1












      $begingroup$


      Jelly, 10 bytes



      UÐeẎṙṁ⁸UÐe


      A dyadic Link accepting the marix on the left and the rotation integer on the right (uses the reverse meaning of positive / negative)



      Try it online!



      How?



      UÐeẎṙṁ⁸UÐe - Link: matrix of integers, M; integer, R
      Ðe - apply to even indices of M:
      U - reverse each
      Ẏ - tighten
      ṙ - rotate left by R
      ṁ - mould like:
      ⁸ - chain's left argument, M
      Ðe - apply to even indices of M:
      U - reverse each





      share|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$


        Jelly, 10 bytes



        UÐeẎṙṁ⁸UÐe


        A dyadic Link accepting the marix on the left and the rotation integer on the right (uses the reverse meaning of positive / negative)



        Try it online!



        How?



        UÐeẎṙṁ⁸UÐe - Link: matrix of integers, M; integer, R
        Ðe - apply to even indices of M:
        U - reverse each
        Ẏ - tighten
        ṙ - rotate left by R
        ṁ - mould like:
        ⁸ - chain's left argument, M
        Ðe - apply to even indices of M:
        U - reverse each





        share|improve this answer











        $endgroup$




        Jelly, 10 bytes



        UÐeẎṙṁ⁸UÐe


        A dyadic Link accepting the marix on the left and the rotation integer on the right (uses the reverse meaning of positive / negative)



        Try it online!



        How?



        UÐeẎṙṁ⁸UÐe - Link: matrix of integers, M; integer, R
        Ðe - apply to even indices of M:
        U - reverse each
        Ẏ - tighten
        ṙ - rotate left by R
        ṁ - mould like:
        ⁸ - chain's left argument, M
        Ðe - apply to even indices of M:
        U - reverse each






        share|improve this answer














        share|improve this answer



        share|improve this answer








        edited 3 hours ago

























        answered 4 hours ago









        Jonathan AllanJonathan Allan

        54.2k537174




        54.2k537174






























            draft saved

            draft discarded




















































            If this is an answer to a challenge…




            • …Be sure to follow the challenge specification. However, please refrain from exploiting obvious loopholes. Answers abusing any of the standard loopholes are considered invalid. If you think a specification is unclear or underspecified, comment on the question instead.


            • …Try to optimize your score. For instance, answers to code-golf challenges should attempt to be as short as possible. You can always include a readable version of the code in addition to the competitive one.
              Explanations of your answer make it more interesting to read and are very much encouraged.


            • …Include a short header which indicates the language(s) of your code and its score, as defined by the challenge.



            More generally…




            • …Please make sure to answer the question and provide sufficient detail.


            • …Avoid asking for help, clarification or responding to other answers (use comments instead).





            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodegolf.stackexchange.com%2fquestions%2f183153%2fslither-like-a-snake%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            “%fieldName is a required field.”, in Magento2 REST API Call for GET Method Type The Next...

            How to change City field to a dropdown in Checkout step Magento 2Magento 2 : How to change UI field(s)...

            變成蝙蝠會怎樣? 參考資料 外部連結 导航菜单Thomas Nagel, "What is it like to be a...