Continuity of Linear Operator Between Hilbert SpacesNorm of adjoint operator in Hilbert spaceSesquilinear...

Why do Australian milk farmers need to protest supermarkets' milk price?

How to change two letters closest to a string and one letter immediately after a string using notepad++

What should tie a collection of short-stories together?

Professor being mistaken for a grad student

Min function accepting varying number of arguments in C++17

How to terminate ping <dest> &

Sailing the cryptic seas

How to deal with taxi scam when on vacation?

Did Ender ever learn that he killed Stilson and/or Bonzo?

Most cost effective thermostat setting: consistent temperature vs. lowest temperature possible

Continuity of Linear Operator Between Hilbert Spaces

Life insurance that covers only simultaneous/dual deaths

Should we release the security issues we found in our product as CVE or we can just update those on weekly release notes?

What are substitutions for coconut in curry?

How to make healing in an exploration game interesting

What exactly is this small puffer fish doing and how did it manage to accomplish such a feat?

Have researchers managed to "reverse time"? If so, what does that mean for physics?

Can I use USB data pins as power source

A Cautionary Suggestion

What's the meaning of “spike” in the context of “adrenaline spike”?

Does someone need to be connected to my network to sniff HTTP requests?

How difficult is it to simply disable/disengage the MCAS on Boeing 737 Max 8 & 9 Aircraft?

Look at your watch and tell me what time is it. vs Look at your watch and tell me what time it is

Interplanetary conflict, some disease destroys the ability to understand or appreciate music



Continuity of Linear Operator Between Hilbert Spaces


Norm of adjoint operator in Hilbert spaceSesquilinear forms on Hilbert spacesGradient of inner product in Hilbert spaceDissipativity for Hilbert spacesA self-adjoint operator on a Hilbert spaceComplementary slackness in Hilbert spacesProof that every bounded linear operator between hilbert spaces has an adjoint.Proof explanation related to the operator matricesShowing that $exists x in H : |A(x)| = |A|_mathcal{L}$ if $H$ is Hilbert and $A in mathcal{L}_c(X,Y)$.Why is this operator symmetric? A question concerning a paper from Brezis and Crandall













2












$begingroup$



Note: Please do not give a solution; I am curious to understand why my solution is incorrect, and would prefer guidance to help me complete the question myself. Thank you.






Let $mathcal{H}$ be a Hilbert space, and suppose that $Tintext{Hom}(mathcal{H},mathcal{H})$. Suppose that there exists an operator $tilde{T}:mathcal{H}rightarrowmathcal{H}$ such that,
begin{align}
langle Tx,yrangle =langle x,tilde{T}yrangle,
end{align}

$forall x,yinmathcal{H}$. Show that $T$ is continuous.



My current solution is as follows:



Assume for all $delta>0$ there exists $n>Ninmathbb{N}$ such that,
begin{align}
|x_{n}-x|<delta.
end{align}

Then,
begin{align}
langle Tx_{n}-Tx,Tx_{n}-Txrangle &= |Tx_{n}-Tx|^{2}\
&leq|Tx_{n}-Tx|=|T(x_{n}-x)|\
&leq|T||x_{n}-x|rightarrow 0text{ as }nrightarrowinfty.
end{align}



What am I doing wrong? I notice I do not use the existence of $tilde{T}$.



Second Attempt:



Assume $langle x_{n},xrangle rightarrow langle x,xrangle$ as $nrightarrowinfty$. Then, given $langle Tx,yrangle = langle x,tilde{T}yrangle$,
begin{align}
langle Tx_{n},yrangle &= langle x_{n},tilde{T}yranglerightarrow_{nrightarrowinfty}langle x,tilde{T}yrangle=langle Tx,yrangle.
end{align}

Therefore, $Tx_{n}rightarrow Tx$ as $nrightarrowinfty$.



Third Attempt:



Assume $|x_{n}-x|rightarrow 0$ as $nrightarrowinfty$. Then,
begin{align}
langle Tx_{n}-Tx,Tx_{n}-Txrangle=langle x_{n}-x,x_{n}-xrangle=|x_{n}-x|^{2}.
end{align}



By assumption $|x_{n}-x|^{2}rightarrow 0$ as $nrightarrowinfty$. Hence,
begin{align}
langle Tx_{n}-Tx,Tx_{n}-Txrangle = |Tx_{n}-Tx|^{2}rightarrow 0text{ as }nrightarrowinfty.
end{align}

Therefore, $T$ is continuous.










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    The last inequality basically implies that the norm of T is bounded or that it is continuous
    $endgroup$
    – Andres Mejia
    5 hours ago






  • 1




    $begingroup$
    Comment on the second attempt: you showed that $Tx_n to Tx$ weakly, not in norm. Off-topic comment: I admire your tenacity. Keep trying!
    $endgroup$
    – Umberto P.
    4 hours ago












  • $begingroup$
    Thank you. Do you have a hint?
    $endgroup$
    – Jack
    4 hours ago










  • $begingroup$
    Third attempt made. Although not sure if this holds either.
    $endgroup$
    – Jack
    4 hours ago
















2












$begingroup$



Note: Please do not give a solution; I am curious to understand why my solution is incorrect, and would prefer guidance to help me complete the question myself. Thank you.






Let $mathcal{H}$ be a Hilbert space, and suppose that $Tintext{Hom}(mathcal{H},mathcal{H})$. Suppose that there exists an operator $tilde{T}:mathcal{H}rightarrowmathcal{H}$ such that,
begin{align}
langle Tx,yrangle =langle x,tilde{T}yrangle,
end{align}

$forall x,yinmathcal{H}$. Show that $T$ is continuous.



My current solution is as follows:



Assume for all $delta>0$ there exists $n>Ninmathbb{N}$ such that,
begin{align}
|x_{n}-x|<delta.
end{align}

Then,
begin{align}
langle Tx_{n}-Tx,Tx_{n}-Txrangle &= |Tx_{n}-Tx|^{2}\
&leq|Tx_{n}-Tx|=|T(x_{n}-x)|\
&leq|T||x_{n}-x|rightarrow 0text{ as }nrightarrowinfty.
end{align}



What am I doing wrong? I notice I do not use the existence of $tilde{T}$.



Second Attempt:



Assume $langle x_{n},xrangle rightarrow langle x,xrangle$ as $nrightarrowinfty$. Then, given $langle Tx,yrangle = langle x,tilde{T}yrangle$,
begin{align}
langle Tx_{n},yrangle &= langle x_{n},tilde{T}yranglerightarrow_{nrightarrowinfty}langle x,tilde{T}yrangle=langle Tx,yrangle.
end{align}

Therefore, $Tx_{n}rightarrow Tx$ as $nrightarrowinfty$.



Third Attempt:



Assume $|x_{n}-x|rightarrow 0$ as $nrightarrowinfty$. Then,
begin{align}
langle Tx_{n}-Tx,Tx_{n}-Txrangle=langle x_{n}-x,x_{n}-xrangle=|x_{n}-x|^{2}.
end{align}



By assumption $|x_{n}-x|^{2}rightarrow 0$ as $nrightarrowinfty$. Hence,
begin{align}
langle Tx_{n}-Tx,Tx_{n}-Txrangle = |Tx_{n}-Tx|^{2}rightarrow 0text{ as }nrightarrowinfty.
end{align}

Therefore, $T$ is continuous.










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    The last inequality basically implies that the norm of T is bounded or that it is continuous
    $endgroup$
    – Andres Mejia
    5 hours ago






  • 1




    $begingroup$
    Comment on the second attempt: you showed that $Tx_n to Tx$ weakly, not in norm. Off-topic comment: I admire your tenacity. Keep trying!
    $endgroup$
    – Umberto P.
    4 hours ago












  • $begingroup$
    Thank you. Do you have a hint?
    $endgroup$
    – Jack
    4 hours ago










  • $begingroup$
    Third attempt made. Although not sure if this holds either.
    $endgroup$
    – Jack
    4 hours ago














2












2








2


1



$begingroup$



Note: Please do not give a solution; I am curious to understand why my solution is incorrect, and would prefer guidance to help me complete the question myself. Thank you.






Let $mathcal{H}$ be a Hilbert space, and suppose that $Tintext{Hom}(mathcal{H},mathcal{H})$. Suppose that there exists an operator $tilde{T}:mathcal{H}rightarrowmathcal{H}$ such that,
begin{align}
langle Tx,yrangle =langle x,tilde{T}yrangle,
end{align}

$forall x,yinmathcal{H}$. Show that $T$ is continuous.



My current solution is as follows:



Assume for all $delta>0$ there exists $n>Ninmathbb{N}$ such that,
begin{align}
|x_{n}-x|<delta.
end{align}

Then,
begin{align}
langle Tx_{n}-Tx,Tx_{n}-Txrangle &= |Tx_{n}-Tx|^{2}\
&leq|Tx_{n}-Tx|=|T(x_{n}-x)|\
&leq|T||x_{n}-x|rightarrow 0text{ as }nrightarrowinfty.
end{align}



What am I doing wrong? I notice I do not use the existence of $tilde{T}$.



Second Attempt:



Assume $langle x_{n},xrangle rightarrow langle x,xrangle$ as $nrightarrowinfty$. Then, given $langle Tx,yrangle = langle x,tilde{T}yrangle$,
begin{align}
langle Tx_{n},yrangle &= langle x_{n},tilde{T}yranglerightarrow_{nrightarrowinfty}langle x,tilde{T}yrangle=langle Tx,yrangle.
end{align}

Therefore, $Tx_{n}rightarrow Tx$ as $nrightarrowinfty$.



Third Attempt:



Assume $|x_{n}-x|rightarrow 0$ as $nrightarrowinfty$. Then,
begin{align}
langle Tx_{n}-Tx,Tx_{n}-Txrangle=langle x_{n}-x,x_{n}-xrangle=|x_{n}-x|^{2}.
end{align}



By assumption $|x_{n}-x|^{2}rightarrow 0$ as $nrightarrowinfty$. Hence,
begin{align}
langle Tx_{n}-Tx,Tx_{n}-Txrangle = |Tx_{n}-Tx|^{2}rightarrow 0text{ as }nrightarrowinfty.
end{align}

Therefore, $T$ is continuous.










share|cite|improve this question











$endgroup$





Note: Please do not give a solution; I am curious to understand why my solution is incorrect, and would prefer guidance to help me complete the question myself. Thank you.






Let $mathcal{H}$ be a Hilbert space, and suppose that $Tintext{Hom}(mathcal{H},mathcal{H})$. Suppose that there exists an operator $tilde{T}:mathcal{H}rightarrowmathcal{H}$ such that,
begin{align}
langle Tx,yrangle =langle x,tilde{T}yrangle,
end{align}

$forall x,yinmathcal{H}$. Show that $T$ is continuous.



My current solution is as follows:



Assume for all $delta>0$ there exists $n>Ninmathbb{N}$ such that,
begin{align}
|x_{n}-x|<delta.
end{align}

Then,
begin{align}
langle Tx_{n}-Tx,Tx_{n}-Txrangle &= |Tx_{n}-Tx|^{2}\
&leq|Tx_{n}-Tx|=|T(x_{n}-x)|\
&leq|T||x_{n}-x|rightarrow 0text{ as }nrightarrowinfty.
end{align}



What am I doing wrong? I notice I do not use the existence of $tilde{T}$.



Second Attempt:



Assume $langle x_{n},xrangle rightarrow langle x,xrangle$ as $nrightarrowinfty$. Then, given $langle Tx,yrangle = langle x,tilde{T}yrangle$,
begin{align}
langle Tx_{n},yrangle &= langle x_{n},tilde{T}yranglerightarrow_{nrightarrowinfty}langle x,tilde{T}yrangle=langle Tx,yrangle.
end{align}

Therefore, $Tx_{n}rightarrow Tx$ as $nrightarrowinfty$.



Third Attempt:



Assume $|x_{n}-x|rightarrow 0$ as $nrightarrowinfty$. Then,
begin{align}
langle Tx_{n}-Tx,Tx_{n}-Txrangle=langle x_{n}-x,x_{n}-xrangle=|x_{n}-x|^{2}.
end{align}



By assumption $|x_{n}-x|^{2}rightarrow 0$ as $nrightarrowinfty$. Hence,
begin{align}
langle Tx_{n}-Tx,Tx_{n}-Txrangle = |Tx_{n}-Tx|^{2}rightarrow 0text{ as }nrightarrowinfty.
end{align}

Therefore, $T$ is continuous.







functional-analysis continuity hilbert-spaces






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 4 hours ago







Jack

















asked 5 hours ago









JackJack

887




887








  • 2




    $begingroup$
    The last inequality basically implies that the norm of T is bounded or that it is continuous
    $endgroup$
    – Andres Mejia
    5 hours ago






  • 1




    $begingroup$
    Comment on the second attempt: you showed that $Tx_n to Tx$ weakly, not in norm. Off-topic comment: I admire your tenacity. Keep trying!
    $endgroup$
    – Umberto P.
    4 hours ago












  • $begingroup$
    Thank you. Do you have a hint?
    $endgroup$
    – Jack
    4 hours ago










  • $begingroup$
    Third attempt made. Although not sure if this holds either.
    $endgroup$
    – Jack
    4 hours ago














  • 2




    $begingroup$
    The last inequality basically implies that the norm of T is bounded or that it is continuous
    $endgroup$
    – Andres Mejia
    5 hours ago






  • 1




    $begingroup$
    Comment on the second attempt: you showed that $Tx_n to Tx$ weakly, not in norm. Off-topic comment: I admire your tenacity. Keep trying!
    $endgroup$
    – Umberto P.
    4 hours ago












  • $begingroup$
    Thank you. Do you have a hint?
    $endgroup$
    – Jack
    4 hours ago










  • $begingroup$
    Third attempt made. Although not sure if this holds either.
    $endgroup$
    – Jack
    4 hours ago








2




2




$begingroup$
The last inequality basically implies that the norm of T is bounded or that it is continuous
$endgroup$
– Andres Mejia
5 hours ago




$begingroup$
The last inequality basically implies that the norm of T is bounded or that it is continuous
$endgroup$
– Andres Mejia
5 hours ago




1




1




$begingroup$
Comment on the second attempt: you showed that $Tx_n to Tx$ weakly, not in norm. Off-topic comment: I admire your tenacity. Keep trying!
$endgroup$
– Umberto P.
4 hours ago






$begingroup$
Comment on the second attempt: you showed that $Tx_n to Tx$ weakly, not in norm. Off-topic comment: I admire your tenacity. Keep trying!
$endgroup$
– Umberto P.
4 hours ago














$begingroup$
Thank you. Do you have a hint?
$endgroup$
– Jack
4 hours ago




$begingroup$
Thank you. Do you have a hint?
$endgroup$
– Jack
4 hours ago












$begingroup$
Third attempt made. Although not sure if this holds either.
$endgroup$
– Jack
4 hours ago




$begingroup$
Third attempt made. Although not sure if this holds either.
$endgroup$
– Jack
4 hours ago










1 Answer
1






active

oldest

votes


















5












$begingroup$

The problem is that we can't assume that $T$ has a finite norm. Before we add that condition about having an adjoint map $tilde{T}$, we're simply assuming that $T$ is a linear map.



In fact, a linear map between normed vector spaces is continuous if and only if it has a finite operator norm. You assumed the statement we were trying to prove.



Second attempt: The assumption here should have been that $x_nto x$, as in the others. Then, yes, $langle Tx_n,yrangle to langle Tx,yrangle$ for each $y$. This is real progress. But, as stated in the comments, it's weak convergence rather than convergence in norm. Not quite there.



Third attempt: No, $langle Tu,Turangle$ is not equal to $langle u,urangle$ - it's equal to $langle u,tilde{T}Turangle$, and you don't know what $tilde{T}T$ does. This is not helpful.



All, right, lets go back to the attempt that made some progress. Are you familiar with the uniform boundedness principle? One consequence of that theorem is that any sequence of points in a Hilbert space that converges weakly is bounded. Can we use this to ensure that $T$ is a bounded operator?






share|cite|improve this answer











$endgroup$













  • $begingroup$
    So is the idea for me to use $tilde{T}$ to cancel out the operator norm in my final inequality?
    $endgroup$
    – Jack
    4 hours ago










  • $begingroup$
    @Jack no, that won't rescue the proof.
    $endgroup$
    – Umberto P.
    4 hours ago










  • $begingroup$
    New proof attempt. Please check if you can.
    $endgroup$
    – Jack
    4 hours ago










  • $begingroup$
    I am not familiar with that. I am only aware that given a family of linear operators $(T_{alpha})$ are such that $T_{alpha}:Erightarrow F$, where $E,F$ are Banach spaces. If $sup_{alphain A}|T_{alpha}x|<infty$ then $sup_{alphain A}|T_{alpha}|<infty$.
    $endgroup$
    – Jack
    11 mins ago










  • $begingroup$
    Do you have a link to the corollary of Uniform Boundedness which you refer to?
    $endgroup$
    – Jack
    10 mins ago











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3149977%2fcontinuity-of-linear-operator-between-hilbert-spaces%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









5












$begingroup$

The problem is that we can't assume that $T$ has a finite norm. Before we add that condition about having an adjoint map $tilde{T}$, we're simply assuming that $T$ is a linear map.



In fact, a linear map between normed vector spaces is continuous if and only if it has a finite operator norm. You assumed the statement we were trying to prove.



Second attempt: The assumption here should have been that $x_nto x$, as in the others. Then, yes, $langle Tx_n,yrangle to langle Tx,yrangle$ for each $y$. This is real progress. But, as stated in the comments, it's weak convergence rather than convergence in norm. Not quite there.



Third attempt: No, $langle Tu,Turangle$ is not equal to $langle u,urangle$ - it's equal to $langle u,tilde{T}Turangle$, and you don't know what $tilde{T}T$ does. This is not helpful.



All, right, lets go back to the attempt that made some progress. Are you familiar with the uniform boundedness principle? One consequence of that theorem is that any sequence of points in a Hilbert space that converges weakly is bounded. Can we use this to ensure that $T$ is a bounded operator?






share|cite|improve this answer











$endgroup$













  • $begingroup$
    So is the idea for me to use $tilde{T}$ to cancel out the operator norm in my final inequality?
    $endgroup$
    – Jack
    4 hours ago










  • $begingroup$
    @Jack no, that won't rescue the proof.
    $endgroup$
    – Umberto P.
    4 hours ago










  • $begingroup$
    New proof attempt. Please check if you can.
    $endgroup$
    – Jack
    4 hours ago










  • $begingroup$
    I am not familiar with that. I am only aware that given a family of linear operators $(T_{alpha})$ are such that $T_{alpha}:Erightarrow F$, where $E,F$ are Banach spaces. If $sup_{alphain A}|T_{alpha}x|<infty$ then $sup_{alphain A}|T_{alpha}|<infty$.
    $endgroup$
    – Jack
    11 mins ago










  • $begingroup$
    Do you have a link to the corollary of Uniform Boundedness which you refer to?
    $endgroup$
    – Jack
    10 mins ago
















5












$begingroup$

The problem is that we can't assume that $T$ has a finite norm. Before we add that condition about having an adjoint map $tilde{T}$, we're simply assuming that $T$ is a linear map.



In fact, a linear map between normed vector spaces is continuous if and only if it has a finite operator norm. You assumed the statement we were trying to prove.



Second attempt: The assumption here should have been that $x_nto x$, as in the others. Then, yes, $langle Tx_n,yrangle to langle Tx,yrangle$ for each $y$. This is real progress. But, as stated in the comments, it's weak convergence rather than convergence in norm. Not quite there.



Third attempt: No, $langle Tu,Turangle$ is not equal to $langle u,urangle$ - it's equal to $langle u,tilde{T}Turangle$, and you don't know what $tilde{T}T$ does. This is not helpful.



All, right, lets go back to the attempt that made some progress. Are you familiar with the uniform boundedness principle? One consequence of that theorem is that any sequence of points in a Hilbert space that converges weakly is bounded. Can we use this to ensure that $T$ is a bounded operator?






share|cite|improve this answer











$endgroup$













  • $begingroup$
    So is the idea for me to use $tilde{T}$ to cancel out the operator norm in my final inequality?
    $endgroup$
    – Jack
    4 hours ago










  • $begingroup$
    @Jack no, that won't rescue the proof.
    $endgroup$
    – Umberto P.
    4 hours ago










  • $begingroup$
    New proof attempt. Please check if you can.
    $endgroup$
    – Jack
    4 hours ago










  • $begingroup$
    I am not familiar with that. I am only aware that given a family of linear operators $(T_{alpha})$ are such that $T_{alpha}:Erightarrow F$, where $E,F$ are Banach spaces. If $sup_{alphain A}|T_{alpha}x|<infty$ then $sup_{alphain A}|T_{alpha}|<infty$.
    $endgroup$
    – Jack
    11 mins ago










  • $begingroup$
    Do you have a link to the corollary of Uniform Boundedness which you refer to?
    $endgroup$
    – Jack
    10 mins ago














5












5








5





$begingroup$

The problem is that we can't assume that $T$ has a finite norm. Before we add that condition about having an adjoint map $tilde{T}$, we're simply assuming that $T$ is a linear map.



In fact, a linear map between normed vector spaces is continuous if and only if it has a finite operator norm. You assumed the statement we were trying to prove.



Second attempt: The assumption here should have been that $x_nto x$, as in the others. Then, yes, $langle Tx_n,yrangle to langle Tx,yrangle$ for each $y$. This is real progress. But, as stated in the comments, it's weak convergence rather than convergence in norm. Not quite there.



Third attempt: No, $langle Tu,Turangle$ is not equal to $langle u,urangle$ - it's equal to $langle u,tilde{T}Turangle$, and you don't know what $tilde{T}T$ does. This is not helpful.



All, right, lets go back to the attempt that made some progress. Are you familiar with the uniform boundedness principle? One consequence of that theorem is that any sequence of points in a Hilbert space that converges weakly is bounded. Can we use this to ensure that $T$ is a bounded operator?






share|cite|improve this answer











$endgroup$



The problem is that we can't assume that $T$ has a finite norm. Before we add that condition about having an adjoint map $tilde{T}$, we're simply assuming that $T$ is a linear map.



In fact, a linear map between normed vector spaces is continuous if and only if it has a finite operator norm. You assumed the statement we were trying to prove.



Second attempt: The assumption here should have been that $x_nto x$, as in the others. Then, yes, $langle Tx_n,yrangle to langle Tx,yrangle$ for each $y$. This is real progress. But, as stated in the comments, it's weak convergence rather than convergence in norm. Not quite there.



Third attempt: No, $langle Tu,Turangle$ is not equal to $langle u,urangle$ - it's equal to $langle u,tilde{T}Turangle$, and you don't know what $tilde{T}T$ does. This is not helpful.



All, right, lets go back to the attempt that made some progress. Are you familiar with the uniform boundedness principle? One consequence of that theorem is that any sequence of points in a Hilbert space that converges weakly is bounded. Can we use this to ensure that $T$ is a bounded operator?







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 2 hours ago

























answered 5 hours ago









jmerryjmerry

14.3k1629




14.3k1629












  • $begingroup$
    So is the idea for me to use $tilde{T}$ to cancel out the operator norm in my final inequality?
    $endgroup$
    – Jack
    4 hours ago










  • $begingroup$
    @Jack no, that won't rescue the proof.
    $endgroup$
    – Umberto P.
    4 hours ago










  • $begingroup$
    New proof attempt. Please check if you can.
    $endgroup$
    – Jack
    4 hours ago










  • $begingroup$
    I am not familiar with that. I am only aware that given a family of linear operators $(T_{alpha})$ are such that $T_{alpha}:Erightarrow F$, where $E,F$ are Banach spaces. If $sup_{alphain A}|T_{alpha}x|<infty$ then $sup_{alphain A}|T_{alpha}|<infty$.
    $endgroup$
    – Jack
    11 mins ago










  • $begingroup$
    Do you have a link to the corollary of Uniform Boundedness which you refer to?
    $endgroup$
    – Jack
    10 mins ago


















  • $begingroup$
    So is the idea for me to use $tilde{T}$ to cancel out the operator norm in my final inequality?
    $endgroup$
    – Jack
    4 hours ago










  • $begingroup$
    @Jack no, that won't rescue the proof.
    $endgroup$
    – Umberto P.
    4 hours ago










  • $begingroup$
    New proof attempt. Please check if you can.
    $endgroup$
    – Jack
    4 hours ago










  • $begingroup$
    I am not familiar with that. I am only aware that given a family of linear operators $(T_{alpha})$ are such that $T_{alpha}:Erightarrow F$, where $E,F$ are Banach spaces. If $sup_{alphain A}|T_{alpha}x|<infty$ then $sup_{alphain A}|T_{alpha}|<infty$.
    $endgroup$
    – Jack
    11 mins ago










  • $begingroup$
    Do you have a link to the corollary of Uniform Boundedness which you refer to?
    $endgroup$
    – Jack
    10 mins ago
















$begingroup$
So is the idea for me to use $tilde{T}$ to cancel out the operator norm in my final inequality?
$endgroup$
– Jack
4 hours ago




$begingroup$
So is the idea for me to use $tilde{T}$ to cancel out the operator norm in my final inequality?
$endgroup$
– Jack
4 hours ago












$begingroup$
@Jack no, that won't rescue the proof.
$endgroup$
– Umberto P.
4 hours ago




$begingroup$
@Jack no, that won't rescue the proof.
$endgroup$
– Umberto P.
4 hours ago












$begingroup$
New proof attempt. Please check if you can.
$endgroup$
– Jack
4 hours ago




$begingroup$
New proof attempt. Please check if you can.
$endgroup$
– Jack
4 hours ago












$begingroup$
I am not familiar with that. I am only aware that given a family of linear operators $(T_{alpha})$ are such that $T_{alpha}:Erightarrow F$, where $E,F$ are Banach spaces. If $sup_{alphain A}|T_{alpha}x|<infty$ then $sup_{alphain A}|T_{alpha}|<infty$.
$endgroup$
– Jack
11 mins ago




$begingroup$
I am not familiar with that. I am only aware that given a family of linear operators $(T_{alpha})$ are such that $T_{alpha}:Erightarrow F$, where $E,F$ are Banach spaces. If $sup_{alphain A}|T_{alpha}x|<infty$ then $sup_{alphain A}|T_{alpha}|<infty$.
$endgroup$
– Jack
11 mins ago












$begingroup$
Do you have a link to the corollary of Uniform Boundedness which you refer to?
$endgroup$
– Jack
10 mins ago




$begingroup$
Do you have a link to the corollary of Uniform Boundedness which you refer to?
$endgroup$
– Jack
10 mins ago


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3149977%2fcontinuity-of-linear-operator-between-hilbert-spaces%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

“%fieldName is a required field.”, in Magento2 REST API Call for GET Method Type The Next...

How to change City field to a dropdown in Checkout step Magento 2Magento 2 : How to change UI field(s)...

夢乃愛華...