An inequality of matrix normIs there a condition for the following consequence?Orthogonal Inner Product...

Hacking a Safe Lock after 3 tries

What did Alexander Pope mean by "Expletives their feeble Aid do join"?

What do Xenomorphs eat in the Alien series?

Can a druid choose the size of its wild shape beast?

If I can solve Sudoku can I solve Travelling Salesman Problem(TSP)? If yes, how?

How difficult is it to simply disable/disengage the MCAS on Boeing 737 Max 8 & 9 Aircraft?

Why does Bach not break the rules here?

Who is flying the vertibirds?

How to make healing in an exploration game interesting

My adviser wants to be the first author

How to simplify this time periods definition interface?

Is a party consisting of only a bard, a cleric, and a warlock functional long-term?

Instead of Universal Basic Income, why not Universal Basic NEEDS?

Did Ender ever learn that he killed Stilson and/or Bonzo?

Do I need to be arrogant to get ahead?

Are ETF trackers fundamentally better than individual stocks?

Does Mathematica reuse previous computations?

How to create the Curved texte?

Employee lack of ownership

Life insurance that covers only simultaneous/dual deaths

A limit with limit zero everywhere must be zero somewhere

A sequence that has integer values for prime indexes only:

Is it normal that my co-workers at a fitness company criticize my food choices?

AG Cluster db upgrade by vendor



An inequality of matrix norm


Is there a condition for the following consequence?Orthogonal Inner Product Proofprove change of basis matrix is unitarya matrix metricMatrix of non-degenerate product invertible?Prove that there is a $uin V$, such that $<u,v_i>$ is greater than zero, for every $i in {{1,..,m}}$.Inner product of dual basisColumn Spaces and SubsetsProve matrix inequality in inner product spaceInduced inner product on tensor powers.













3












$begingroup$


Let $V,W$ be complex inner product spaces. Suppose $T: V to W$ is a linear map, then we define
$$|T|:=sup{|Tv|_{W}:|v|_{V}=1}$$ where $|v_{V}|:=sqrt{langle v,vrangle}$ and $|Tv|_{W}:=sqrt{langle Tv,Tvrangle}$.



Question: Suppose $U_1,ldots,U_k$ and $V_1,ldots,V_k$ are $n {times} n$ unitary matrices. Show that
$$|U_1cdots U_k-V_1cdots V_k| leq sum_{i=1}^{k}|U_i-V_i|$$



I have tried to use triangle inequality for norms and induction but failed. Can anyone give some hints? Thank you!










share|cite|improve this question











$endgroup$

















    3












    $begingroup$


    Let $V,W$ be complex inner product spaces. Suppose $T: V to W$ is a linear map, then we define
    $$|T|:=sup{|Tv|_{W}:|v|_{V}=1}$$ where $|v_{V}|:=sqrt{langle v,vrangle}$ and $|Tv|_{W}:=sqrt{langle Tv,Tvrangle}$.



    Question: Suppose $U_1,ldots,U_k$ and $V_1,ldots,V_k$ are $n {times} n$ unitary matrices. Show that
    $$|U_1cdots U_k-V_1cdots V_k| leq sum_{i=1}^{k}|U_i-V_i|$$



    I have tried to use triangle inequality for norms and induction but failed. Can anyone give some hints? Thank you!










    share|cite|improve this question











    $endgroup$















      3












      3








      3


      1



      $begingroup$


      Let $V,W$ be complex inner product spaces. Suppose $T: V to W$ is a linear map, then we define
      $$|T|:=sup{|Tv|_{W}:|v|_{V}=1}$$ where $|v_{V}|:=sqrt{langle v,vrangle}$ and $|Tv|_{W}:=sqrt{langle Tv,Tvrangle}$.



      Question: Suppose $U_1,ldots,U_k$ and $V_1,ldots,V_k$ are $n {times} n$ unitary matrices. Show that
      $$|U_1cdots U_k-V_1cdots V_k| leq sum_{i=1}^{k}|U_i-V_i|$$



      I have tried to use triangle inequality for norms and induction but failed. Can anyone give some hints? Thank you!










      share|cite|improve this question











      $endgroup$




      Let $V,W$ be complex inner product spaces. Suppose $T: V to W$ is a linear map, then we define
      $$|T|:=sup{|Tv|_{W}:|v|_{V}=1}$$ where $|v_{V}|:=sqrt{langle v,vrangle}$ and $|Tv|_{W}:=sqrt{langle Tv,Tvrangle}$.



      Question: Suppose $U_1,ldots,U_k$ and $V_1,ldots,V_k$ are $n {times} n$ unitary matrices. Show that
      $$|U_1cdots U_k-V_1cdots V_k| leq sum_{i=1}^{k}|U_i-V_i|$$



      I have tried to use triangle inequality for norms and induction but failed. Can anyone give some hints? Thank you!







      linear-algebra matrices functional-analysis norm






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 1 hour ago









      Bernard

      123k741116




      123k741116










      asked 2 hours ago









      bbwbbw

      51739




      51739






















          1 Answer
          1






          active

          oldest

          votes


















          6












          $begingroup$

          For $k = 1$, the inequality becomes an identity. So, start with the special case $k = 2$:
          $$
          begin{array}{ll}
          & ||U_1 U_2 - V_1 V_2||\ \
          = & ||U_1 U_2 - V_1 U_2 + V_1 U_2 - V_1 V_2||\ \
          = &
          || ( U_1 - V_1) U_2 + V_1 (U_2 - V_2) || \ \
          leq & ||( U_1 - V_1) U_2 || + ||V_1 (U_2 - V_2) ||.\
          end{array}
          $$

          (The last inequality is the triangle inequality.) Now, since $U_2$ is unitary, we have $||U_{2}|| = 1$, so
          $$
          || ( U_1 - V_1) U_2 || leq || U_1 - V_1 ||.
          $$

          A similar bound obtains for $||V_1 (U_2 - V_2) ||$.



          This should give you enough "building blocks".:)






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Thank you so much!
            $endgroup$
            – bbw
            1 hour ago






          • 1




            $begingroup$
            You are welcome. I edited to remove the (unjustified) assumption that the matrices commute.:)
            $endgroup$
            – avs
            1 hour ago











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3149889%2fan-inequality-of-matrix-norm%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          6












          $begingroup$

          For $k = 1$, the inequality becomes an identity. So, start with the special case $k = 2$:
          $$
          begin{array}{ll}
          & ||U_1 U_2 - V_1 V_2||\ \
          = & ||U_1 U_2 - V_1 U_2 + V_1 U_2 - V_1 V_2||\ \
          = &
          || ( U_1 - V_1) U_2 + V_1 (U_2 - V_2) || \ \
          leq & ||( U_1 - V_1) U_2 || + ||V_1 (U_2 - V_2) ||.\
          end{array}
          $$

          (The last inequality is the triangle inequality.) Now, since $U_2$ is unitary, we have $||U_{2}|| = 1$, so
          $$
          || ( U_1 - V_1) U_2 || leq || U_1 - V_1 ||.
          $$

          A similar bound obtains for $||V_1 (U_2 - V_2) ||$.



          This should give you enough "building blocks".:)






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Thank you so much!
            $endgroup$
            – bbw
            1 hour ago






          • 1




            $begingroup$
            You are welcome. I edited to remove the (unjustified) assumption that the matrices commute.:)
            $endgroup$
            – avs
            1 hour ago
















          6












          $begingroup$

          For $k = 1$, the inequality becomes an identity. So, start with the special case $k = 2$:
          $$
          begin{array}{ll}
          & ||U_1 U_2 - V_1 V_2||\ \
          = & ||U_1 U_2 - V_1 U_2 + V_1 U_2 - V_1 V_2||\ \
          = &
          || ( U_1 - V_1) U_2 + V_1 (U_2 - V_2) || \ \
          leq & ||( U_1 - V_1) U_2 || + ||V_1 (U_2 - V_2) ||.\
          end{array}
          $$

          (The last inequality is the triangle inequality.) Now, since $U_2$ is unitary, we have $||U_{2}|| = 1$, so
          $$
          || ( U_1 - V_1) U_2 || leq || U_1 - V_1 ||.
          $$

          A similar bound obtains for $||V_1 (U_2 - V_2) ||$.



          This should give you enough "building blocks".:)






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Thank you so much!
            $endgroup$
            – bbw
            1 hour ago






          • 1




            $begingroup$
            You are welcome. I edited to remove the (unjustified) assumption that the matrices commute.:)
            $endgroup$
            – avs
            1 hour ago














          6












          6








          6





          $begingroup$

          For $k = 1$, the inequality becomes an identity. So, start with the special case $k = 2$:
          $$
          begin{array}{ll}
          & ||U_1 U_2 - V_1 V_2||\ \
          = & ||U_1 U_2 - V_1 U_2 + V_1 U_2 - V_1 V_2||\ \
          = &
          || ( U_1 - V_1) U_2 + V_1 (U_2 - V_2) || \ \
          leq & ||( U_1 - V_1) U_2 || + ||V_1 (U_2 - V_2) ||.\
          end{array}
          $$

          (The last inequality is the triangle inequality.) Now, since $U_2$ is unitary, we have $||U_{2}|| = 1$, so
          $$
          || ( U_1 - V_1) U_2 || leq || U_1 - V_1 ||.
          $$

          A similar bound obtains for $||V_1 (U_2 - V_2) ||$.



          This should give you enough "building blocks".:)






          share|cite|improve this answer











          $endgroup$



          For $k = 1$, the inequality becomes an identity. So, start with the special case $k = 2$:
          $$
          begin{array}{ll}
          & ||U_1 U_2 - V_1 V_2||\ \
          = & ||U_1 U_2 - V_1 U_2 + V_1 U_2 - V_1 V_2||\ \
          = &
          || ( U_1 - V_1) U_2 + V_1 (U_2 - V_2) || \ \
          leq & ||( U_1 - V_1) U_2 || + ||V_1 (U_2 - V_2) ||.\
          end{array}
          $$

          (The last inequality is the triangle inequality.) Now, since $U_2$ is unitary, we have $||U_{2}|| = 1$, so
          $$
          || ( U_1 - V_1) U_2 || leq || U_1 - V_1 ||.
          $$

          A similar bound obtains for $||V_1 (U_2 - V_2) ||$.



          This should give you enough "building blocks".:)







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 1 hour ago

























          answered 1 hour ago









          avsavs

          3,424513




          3,424513












          • $begingroup$
            Thank you so much!
            $endgroup$
            – bbw
            1 hour ago






          • 1




            $begingroup$
            You are welcome. I edited to remove the (unjustified) assumption that the matrices commute.:)
            $endgroup$
            – avs
            1 hour ago


















          • $begingroup$
            Thank you so much!
            $endgroup$
            – bbw
            1 hour ago






          • 1




            $begingroup$
            You are welcome. I edited to remove the (unjustified) assumption that the matrices commute.:)
            $endgroup$
            – avs
            1 hour ago
















          $begingroup$
          Thank you so much!
          $endgroup$
          – bbw
          1 hour ago




          $begingroup$
          Thank you so much!
          $endgroup$
          – bbw
          1 hour ago




          1




          1




          $begingroup$
          You are welcome. I edited to remove the (unjustified) assumption that the matrices commute.:)
          $endgroup$
          – avs
          1 hour ago




          $begingroup$
          You are welcome. I edited to remove the (unjustified) assumption that the matrices commute.:)
          $endgroup$
          – avs
          1 hour ago


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3149889%2fan-inequality-of-matrix-norm%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          “%fieldName is a required field.”, in Magento2 REST API Call for GET Method Type The Next...

          How to change City field to a dropdown in Checkout step Magento 2Magento 2 : How to change UI field(s)...

          變成蝙蝠會怎樣? 參考資料 外部連結 导航菜单Thomas Nagel, "What is it like to be a...