Using only 1s, make 29 with the minimum number of digitsMaking π from 1 2 3 4 5 6 7 8 9Express the number...
Why publish a research paper when a blog post or a lecture slide can have more citation count than a journal paper?
kill -0 <PID> は何をするのでしょうか?
Why would space fleets be aligned?
Citing paywalled articles accessed via illegal web sharing
Consequences of lack of rigour
Gear reduction on large turbofans
Use two 8s and two 3s to make the number 24
Why was Lupin comfortable with saying Voldemort's name?
Why zero tolerance on nudity in space?
What sets the resolution of an analog resistive sensor?
SET NOCOUNT Error in handling SQL call after upgrade
What incentives do banks have to gather up loans into pools (backed by Ginnie Mae)and selling them?
What is the difference between rolling more dice versus fewer dice?
Cookies - Should the toggles be on?
Numbers with a minus sign in a matrix not aligned with the numbers without minus sign
Why is working on the same position for more than 15 years not a red flag?
How would an AI self awareness kill switch work?
What would the chemical name be for C13H8Cl3NO
Mathematics and the art of linearizing the circle
Non-Cancer terminal illness that can affect young (age 10-13) girls?
Aligning symbols underneath each other neatly
How much mayhem could I cause as a sentient fish?
Quickly creating a sparse array
Is there a weight limit to Feather Fall?
Using only 1s, make 29 with the minimum number of digits
Making π from 1 2 3 4 5 6 7 8 9Express the number $2015$ using only the digit $2$ twiceHow many consecutive positive integers can you make using exactly four instances of the digit '4'?Make numbers 1 - 32 using the digits 2, 0, 1, 7Most consecutive positive integers using two 1sMake numbers 1-31 with 1,9,7,8Make numbers 1 - 30 using the digits 2, 0, 1, 8Make numbers 93 using the digits 2, 0, 1, 8Make numbers 33-100 using only digits 2,0,1,8Make numbers 1-30 using 2, 0, 1, 9
$begingroup$
Operations permitted:
- Standard operations: +, −, ×, ÷
- Negation: −
- Exponentiation of two numbers: x^y
- Square root of a number: √
- Factorial: !
- Concatenation of the original digits: dd
mathematics calculation-puzzle formation-of-numbers
New contributor
$endgroup$
add a comment |
$begingroup$
Operations permitted:
- Standard operations: +, −, ×, ÷
- Negation: −
- Exponentiation of two numbers: x^y
- Square root of a number: √
- Factorial: !
- Concatenation of the original digits: dd
mathematics calculation-puzzle formation-of-numbers
New contributor
$endgroup$
add a comment |
$begingroup$
Operations permitted:
- Standard operations: +, −, ×, ÷
- Negation: −
- Exponentiation of two numbers: x^y
- Square root of a number: √
- Factorial: !
- Concatenation of the original digits: dd
mathematics calculation-puzzle formation-of-numbers
New contributor
$endgroup$
Operations permitted:
- Standard operations: +, −, ×, ÷
- Negation: −
- Exponentiation of two numbers: x^y
- Square root of a number: √
- Factorial: !
- Concatenation of the original digits: dd
mathematics calculation-puzzle formation-of-numbers
mathematics calculation-puzzle formation-of-numbers
New contributor
New contributor
New contributor
asked 1 hour ago
Allan CaoAllan Cao
1113
1113
New contributor
New contributor
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Here's a 7 digits solution:
7 digits: (11-1)x(1+1+1)-1
$endgroup$
$begingroup$
That is the minimum I achieved by referencing the Single Digit Representations of Natural Numbers paper. Hopefully 6 is possible.
$endgroup$
– Allan Cao
1 hour ago
$begingroup$
Do you mean that allowing concatenations should reduce it from 7 to 6? Or are the constraints the same in the paper you cite as in the question above?
$endgroup$
– Dr Xorile
1 hour ago
$begingroup$
The paper uses different rules.
$endgroup$
– Allan Cao
52 mins ago
add a comment |
$begingroup$
Lowest I managed so far is 9 digits:
(1 + 1 + 1 + 1)! + 1 + 1 + 1 + 1 + 1
11*(1 + 1 + 1) - (1 + 1 + 1 + 1)
Some other ways I came up with:
(1 + 1)^(1 + 1 + 1 + 1 + 1) - 1 - 1 - 1 (10 digits)
(1 + 1 + 1 + 1 + 1)!/(1 + 1 + 1 + 1) - 1 (10 digits)
(1 + 1 + 1 + 1 + 1)^(1 + 1) + 1 + 1 + 1 + 1 (11 digits)
11*(1 + 1) + 1 + 1 + 1 + 1 + 1 + 1 + 1 (11 digits)
$endgroup$
add a comment |
$begingroup$
For the sake of completeness, here's an 8 digit solution:
(1+1+1)^(1+1+1) + 1 + 1
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "559"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Allan Cao is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f80050%2fusing-only-1s-make-29-with-the-minimum-number-of-digits%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Here's a 7 digits solution:
7 digits: (11-1)x(1+1+1)-1
$endgroup$
$begingroup$
That is the minimum I achieved by referencing the Single Digit Representations of Natural Numbers paper. Hopefully 6 is possible.
$endgroup$
– Allan Cao
1 hour ago
$begingroup$
Do you mean that allowing concatenations should reduce it from 7 to 6? Or are the constraints the same in the paper you cite as in the question above?
$endgroup$
– Dr Xorile
1 hour ago
$begingroup$
The paper uses different rules.
$endgroup$
– Allan Cao
52 mins ago
add a comment |
$begingroup$
Here's a 7 digits solution:
7 digits: (11-1)x(1+1+1)-1
$endgroup$
$begingroup$
That is the minimum I achieved by referencing the Single Digit Representations of Natural Numbers paper. Hopefully 6 is possible.
$endgroup$
– Allan Cao
1 hour ago
$begingroup$
Do you mean that allowing concatenations should reduce it from 7 to 6? Or are the constraints the same in the paper you cite as in the question above?
$endgroup$
– Dr Xorile
1 hour ago
$begingroup$
The paper uses different rules.
$endgroup$
– Allan Cao
52 mins ago
add a comment |
$begingroup$
Here's a 7 digits solution:
7 digits: (11-1)x(1+1+1)-1
$endgroup$
Here's a 7 digits solution:
7 digits: (11-1)x(1+1+1)-1
answered 1 hour ago
Dr XorileDr Xorile
12.9k22569
12.9k22569
$begingroup$
That is the minimum I achieved by referencing the Single Digit Representations of Natural Numbers paper. Hopefully 6 is possible.
$endgroup$
– Allan Cao
1 hour ago
$begingroup$
Do you mean that allowing concatenations should reduce it from 7 to 6? Or are the constraints the same in the paper you cite as in the question above?
$endgroup$
– Dr Xorile
1 hour ago
$begingroup$
The paper uses different rules.
$endgroup$
– Allan Cao
52 mins ago
add a comment |
$begingroup$
That is the minimum I achieved by referencing the Single Digit Representations of Natural Numbers paper. Hopefully 6 is possible.
$endgroup$
– Allan Cao
1 hour ago
$begingroup$
Do you mean that allowing concatenations should reduce it from 7 to 6? Or are the constraints the same in the paper you cite as in the question above?
$endgroup$
– Dr Xorile
1 hour ago
$begingroup$
The paper uses different rules.
$endgroup$
– Allan Cao
52 mins ago
$begingroup$
That is the minimum I achieved by referencing the Single Digit Representations of Natural Numbers paper. Hopefully 6 is possible.
$endgroup$
– Allan Cao
1 hour ago
$begingroup$
That is the minimum I achieved by referencing the Single Digit Representations of Natural Numbers paper. Hopefully 6 is possible.
$endgroup$
– Allan Cao
1 hour ago
$begingroup$
Do you mean that allowing concatenations should reduce it from 7 to 6? Or are the constraints the same in the paper you cite as in the question above?
$endgroup$
– Dr Xorile
1 hour ago
$begingroup$
Do you mean that allowing concatenations should reduce it from 7 to 6? Or are the constraints the same in the paper you cite as in the question above?
$endgroup$
– Dr Xorile
1 hour ago
$begingroup$
The paper uses different rules.
$endgroup$
– Allan Cao
52 mins ago
$begingroup$
The paper uses different rules.
$endgroup$
– Allan Cao
52 mins ago
add a comment |
$begingroup$
Lowest I managed so far is 9 digits:
(1 + 1 + 1 + 1)! + 1 + 1 + 1 + 1 + 1
11*(1 + 1 + 1) - (1 + 1 + 1 + 1)
Some other ways I came up with:
(1 + 1)^(1 + 1 + 1 + 1 + 1) - 1 - 1 - 1 (10 digits)
(1 + 1 + 1 + 1 + 1)!/(1 + 1 + 1 + 1) - 1 (10 digits)
(1 + 1 + 1 + 1 + 1)^(1 + 1) + 1 + 1 + 1 + 1 (11 digits)
11*(1 + 1) + 1 + 1 + 1 + 1 + 1 + 1 + 1 (11 digits)
$endgroup$
add a comment |
$begingroup$
Lowest I managed so far is 9 digits:
(1 + 1 + 1 + 1)! + 1 + 1 + 1 + 1 + 1
11*(1 + 1 + 1) - (1 + 1 + 1 + 1)
Some other ways I came up with:
(1 + 1)^(1 + 1 + 1 + 1 + 1) - 1 - 1 - 1 (10 digits)
(1 + 1 + 1 + 1 + 1)!/(1 + 1 + 1 + 1) - 1 (10 digits)
(1 + 1 + 1 + 1 + 1)^(1 + 1) + 1 + 1 + 1 + 1 (11 digits)
11*(1 + 1) + 1 + 1 + 1 + 1 + 1 + 1 + 1 (11 digits)
$endgroup$
add a comment |
$begingroup$
Lowest I managed so far is 9 digits:
(1 + 1 + 1 + 1)! + 1 + 1 + 1 + 1 + 1
11*(1 + 1 + 1) - (1 + 1 + 1 + 1)
Some other ways I came up with:
(1 + 1)^(1 + 1 + 1 + 1 + 1) - 1 - 1 - 1 (10 digits)
(1 + 1 + 1 + 1 + 1)!/(1 + 1 + 1 + 1) - 1 (10 digits)
(1 + 1 + 1 + 1 + 1)^(1 + 1) + 1 + 1 + 1 + 1 (11 digits)
11*(1 + 1) + 1 + 1 + 1 + 1 + 1 + 1 + 1 (11 digits)
$endgroup$
Lowest I managed so far is 9 digits:
(1 + 1 + 1 + 1)! + 1 + 1 + 1 + 1 + 1
11*(1 + 1 + 1) - (1 + 1 + 1 + 1)
Some other ways I came up with:
(1 + 1)^(1 + 1 + 1 + 1 + 1) - 1 - 1 - 1 (10 digits)
(1 + 1 + 1 + 1 + 1)!/(1 + 1 + 1 + 1) - 1 (10 digits)
(1 + 1 + 1 + 1 + 1)^(1 + 1) + 1 + 1 + 1 + 1 (11 digits)
11*(1 + 1) + 1 + 1 + 1 + 1 + 1 + 1 + 1 (11 digits)
edited 1 hour ago
answered 1 hour ago
simonzacksimonzack
267110
267110
add a comment |
add a comment |
$begingroup$
For the sake of completeness, here's an 8 digit solution:
(1+1+1)^(1+1+1) + 1 + 1
$endgroup$
add a comment |
$begingroup$
For the sake of completeness, here's an 8 digit solution:
(1+1+1)^(1+1+1) + 1 + 1
$endgroup$
add a comment |
$begingroup$
For the sake of completeness, here's an 8 digit solution:
(1+1+1)^(1+1+1) + 1 + 1
$endgroup$
For the sake of completeness, here's an 8 digit solution:
(1+1+1)^(1+1+1) + 1 + 1
answered 13 mins ago
kwypstonkwypston
1763
1763
add a comment |
add a comment |
Allan Cao is a new contributor. Be nice, and check out our Code of Conduct.
Allan Cao is a new contributor. Be nice, and check out our Code of Conduct.
Allan Cao is a new contributor. Be nice, and check out our Code of Conduct.
Allan Cao is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Puzzling Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f80050%2fusing-only-1s-make-29-with-the-minimum-number-of-digits%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown