Show that the following sequence converges. Please Critique my proof.Prove that a sequence converges to a...

Disable the ">" operator in Rstudio linux terminal

How do you funnel food off a cutting board?

How to avoid being sexist when trying to employ someone to function in a very sexist environment?

Why would the Pakistan airspace closure cancel flights not headed to Pakistan itself?

Would these multi-classing house rules cause unintended problems?

Are there neural networks with very few nodes that decently solve non-trivial problems?

Does fast page mode apply to ROM?

How to acknowledge an embarrassing job interview, now that I work directly with the interviewer?

Typing Amharic inside a math equation?

Show that the following sequence converges. Please Critique my proof.

Book where aliens are selecting humans for food consumption

Can a dragon be stuck looking like a human?

What to do when being responsible for data protection in your lab, yet advice is ignored?

Is a debit card dangerous for an account with low balance and no overdraft protection?

Citing paywalled articles accessed via illegal web sharing

Using only 1s, make 29 with the minimum number of digits

Placing an adverb between a verb and an object?

Help Me simplify: C*(A+B) + ~A*B

What is the in-universe cost of a TIE fighter?

Parsing a string of key-value pairs as a dictionary

Slow moving projectiles from a hand-held weapon - how do they reach the target?

Is there some relative to Dutch word "kijken" in German?

Checking for the existence of multiple directories

Solving Fredholm Equation of the second kind



Show that the following sequence converges. Please Critique my proof.


Prove that a sequence converges to a finite limit iff lim inf equals lim supShow the convergence of sequenceWhat is wrong with the following proof?Simple proof that this sequence converges [verification]Proof that the sequence $a_n=frac{3n+2}{n^2+1}$ converges using the Epsilon N proofQuestion about the proof that the sequence ${a_{j}cdot b_{j}}$ converges to $alpha beta $show that if a subsequence of a cauchy sequence converges, then the whole sequence convergesProof that bounded growth of a sequence implies convergenceShow that the sequence $a_n=frac{cos(n^2+n)}{n^2}$ converges to $0$.Proof that the sequence $left{frac{5n^2-6}{2n^3-7n}right}$ converges to $0$













8












$begingroup$


The problem is as follows:




Let ${a_n}$ be a sequence of nonnegative numbers such that
$$
a_{n+1}leq a_n+frac{(-1)^n}{n}.
$$

Show that $a_n$ converges.




My (wrong) proof:



Notice that
$$
|a_{n+1}-a_n|leq left|frac{(-1)^n}{n}right|leqfrac{1}{n}
$$

and since it is known that $frac{1}{n}rightarrow 0$ as $nrightarrow infty$. We see that we can arbitarily bound, $|a_{n+1}-a_n|$. Thus, $a_n$ converges.



My question:
This is a question from a comprehensive exam I found and am using to review.



Should I argue that we should select $N$ so that $n>N$ implies $left|frac{1}{n}right|<epsilon$ as well?



Notes: Currently working on the proof.










share|cite|improve this question











$endgroup$








  • 4




    $begingroup$
    Your proof is not correct. Your arguments would also work for $a_n = sum_{i=1}^n frac 1 i$, which does not converge.
    $endgroup$
    – Falrach
    4 hours ago






  • 1




    $begingroup$
    Note that you not only need to bound $left| a_{n+1} - a_n right|$ arbitrarily small, but also $left| a_{m} - a_n right|$ for all $m,n geq N$ (where $N$ can be chosen according to the bound).
    $endgroup$
    – Maximilian Janisch
    2 hours ago


















8












$begingroup$


The problem is as follows:




Let ${a_n}$ be a sequence of nonnegative numbers such that
$$
a_{n+1}leq a_n+frac{(-1)^n}{n}.
$$

Show that $a_n$ converges.




My (wrong) proof:



Notice that
$$
|a_{n+1}-a_n|leq left|frac{(-1)^n}{n}right|leqfrac{1}{n}
$$

and since it is known that $frac{1}{n}rightarrow 0$ as $nrightarrow infty$. We see that we can arbitarily bound, $|a_{n+1}-a_n|$. Thus, $a_n$ converges.



My question:
This is a question from a comprehensive exam I found and am using to review.



Should I argue that we should select $N$ so that $n>N$ implies $left|frac{1}{n}right|<epsilon$ as well?



Notes: Currently working on the proof.










share|cite|improve this question











$endgroup$








  • 4




    $begingroup$
    Your proof is not correct. Your arguments would also work for $a_n = sum_{i=1}^n frac 1 i$, which does not converge.
    $endgroup$
    – Falrach
    4 hours ago






  • 1




    $begingroup$
    Note that you not only need to bound $left| a_{n+1} - a_n right|$ arbitrarily small, but also $left| a_{m} - a_n right|$ for all $m,n geq N$ (where $N$ can be chosen according to the bound).
    $endgroup$
    – Maximilian Janisch
    2 hours ago
















8












8








8


1



$begingroup$


The problem is as follows:




Let ${a_n}$ be a sequence of nonnegative numbers such that
$$
a_{n+1}leq a_n+frac{(-1)^n}{n}.
$$

Show that $a_n$ converges.




My (wrong) proof:



Notice that
$$
|a_{n+1}-a_n|leq left|frac{(-1)^n}{n}right|leqfrac{1}{n}
$$

and since it is known that $frac{1}{n}rightarrow 0$ as $nrightarrow infty$. We see that we can arbitarily bound, $|a_{n+1}-a_n|$. Thus, $a_n$ converges.



My question:
This is a question from a comprehensive exam I found and am using to review.



Should I argue that we should select $N$ so that $n>N$ implies $left|frac{1}{n}right|<epsilon$ as well?



Notes: Currently working on the proof.










share|cite|improve this question











$endgroup$




The problem is as follows:




Let ${a_n}$ be a sequence of nonnegative numbers such that
$$
a_{n+1}leq a_n+frac{(-1)^n}{n}.
$$

Show that $a_n$ converges.




My (wrong) proof:



Notice that
$$
|a_{n+1}-a_n|leq left|frac{(-1)^n}{n}right|leqfrac{1}{n}
$$

and since it is known that $frac{1}{n}rightarrow 0$ as $nrightarrow infty$. We see that we can arbitarily bound, $|a_{n+1}-a_n|$. Thus, $a_n$ converges.



My question:
This is a question from a comprehensive exam I found and am using to review.



Should I argue that we should select $N$ so that $n>N$ implies $left|frac{1}{n}right|<epsilon$ as well?



Notes: Currently working on the proof.







real-analysis sequences-and-series convergence fake-proofs






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 hours ago









GNUSupporter 8964民主女神 地下教會

13.9k72650




13.9k72650










asked 4 hours ago









DarelDarel

1149




1149








  • 4




    $begingroup$
    Your proof is not correct. Your arguments would also work for $a_n = sum_{i=1}^n frac 1 i$, which does not converge.
    $endgroup$
    – Falrach
    4 hours ago






  • 1




    $begingroup$
    Note that you not only need to bound $left| a_{n+1} - a_n right|$ arbitrarily small, but also $left| a_{m} - a_n right|$ for all $m,n geq N$ (where $N$ can be chosen according to the bound).
    $endgroup$
    – Maximilian Janisch
    2 hours ago
















  • 4




    $begingroup$
    Your proof is not correct. Your arguments would also work for $a_n = sum_{i=1}^n frac 1 i$, which does not converge.
    $endgroup$
    – Falrach
    4 hours ago






  • 1




    $begingroup$
    Note that you not only need to bound $left| a_{n+1} - a_n right|$ arbitrarily small, but also $left| a_{m} - a_n right|$ for all $m,n geq N$ (where $N$ can be chosen according to the bound).
    $endgroup$
    – Maximilian Janisch
    2 hours ago










4




4




$begingroup$
Your proof is not correct. Your arguments would also work for $a_n = sum_{i=1}^n frac 1 i$, which does not converge.
$endgroup$
– Falrach
4 hours ago




$begingroup$
Your proof is not correct. Your arguments would also work for $a_n = sum_{i=1}^n frac 1 i$, which does not converge.
$endgroup$
– Falrach
4 hours ago




1




1




$begingroup$
Note that you not only need to bound $left| a_{n+1} - a_n right|$ arbitrarily small, but also $left| a_{m} - a_n right|$ for all $m,n geq N$ (where $N$ can be chosen according to the bound).
$endgroup$
– Maximilian Janisch
2 hours ago






$begingroup$
Note that you not only need to bound $left| a_{n+1} - a_n right|$ arbitrarily small, but also $left| a_{m} - a_n right|$ for all $m,n geq N$ (where $N$ can be chosen according to the bound).
$endgroup$
– Maximilian Janisch
2 hours ago












3 Answers
3






active

oldest

votes


















3












$begingroup$

Consider $b_n = a_n + sum_{k=1}^{n-1} frac{(-1)^{k-1}}{k}$. Then



$$ b_{n+1}
= a_{n+1} + sum_{k=1}^{n} frac{(-1)^{k-1}}{k}
leq a_n + frac{(-1)^n}{n} + sum_{k=1}^{n} frac{(-1)^{k-1}}{k}
= b_n, $$



which shows that $(b_n)$ is non-increasing. Moreover, since $sum_{k=1}^{infty} frac{(-1)^{k-1}}{k}$ converges by alternating series test and $(a_n)$ is non-negative, it follows that $(b_n)$ is bounded from below. Therefore $(b_n)$ converges, and so, $(a_n)$ converges as well.






share|cite|improve this answer









$endgroup$









  • 2




    $begingroup$
    Thank you, that's neat! One might add that this argument always works for lower-bounded $(a_n)$ with $a_{n+1}le a_n+c_n$ for some summable $(c_n)$ by setting $b_n=a_n-sum_{k=1}^{n-1}c_k$.
    $endgroup$
    – Mars Plastic
    2 hours ago





















1












$begingroup$

Define $b_k := a_{2k+1}$. Then
$$b_k leq a_{2k} + (-1)^{2k}frac{1}{2k} leq b_{k-1} + (frac{1}{2k} - frac{1}{2k-1}) leq b_{k-1}$$
Since $b_k$ is non-negative and non-increasing: $b_k to b$.
Suppose $a_n nrightarrow b$. Then there exists an $varepsilon > 0 $ s.t. for infinitely many $n$ holds $|a_{2n} - b| > varepsilon$.
Assume that $|a_{2m+1}-a_m| > frac{varepsilon}{2}$ for infinitely many $m$. Then, since $a_{2m+1}- a_m leq frac{1}{2m}$ we have that
begin{align}
a_{2m+1} - a_m < - frac{varepsilon}{2}
end{align}

for infinitely many $m$. Let $M := {m geq 1 : a_{2m+1} - a_m < - frac{varepsilon}{2} text{ is fulfilled for } m }$
begin{align*}
d_m := 1_M (m)
end{align*}

This implies
begin{align*}
0 leq a_{2m+1} = a_1 + sum_{k=1}^{2m} (a_{k+1} - a_k ) = a_1 + sum_{k=1}^m (a_{2k+1} - a_{2k}) + sum_{k=1}^m (a_{2k} - {a_{2k-1}}) \
leq a_1 + sum_{k=1}^m (-1)^{2k} frac{1}{2k}- frac{varepsilon}{2} d_k + sum_{k=1}^m (-1)^{2k-1}frac{1}{2k-1} to a_1 - sum_{k=1}^infty frac{varepsilon}{2} d_k + sum_{i=1}^infty (-1)^i frac{1}{i} = - infty
end{align*}

since $|M| = infty$ and the last series converges. This is a contradiction.
Therefore we have that there exists $Kgeq 1$ s.t. for all $kgeq K$ it holds: $|a_{2k+1} - a_k| leq frac{varepsilon}{2}$. We can conclude that
begin{align*}
|a{2n+1} - b| geq |a_{2n} - b| - |a_{2n+1} - a_n| geq varepsilon - frac{varepsilon}{2} = frac{varepsilon}{2}
end{align*}

for infinitely $n geq K$. Contradiction. Thus $a_n to b$.






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    Use $$sum_{k=1}^n(a_{k+1}-a_k)=a_{n+1}-a_1leqsum_{k=1}^nfrac{(-1)^k}{k}rightarrow -ln2$$






    share|cite|improve this answer











    $endgroup$









    • 1




      $begingroup$
      Be careful! The assumption is only an inequality.
      $endgroup$
      – Mars Plastic
      4 hours ago






    • 1




      $begingroup$
      @Mars Plastic I see. It was typo.
      $endgroup$
      – Michael Rozenberg
      4 hours ago










    • $begingroup$
      That shows that $(a_n)$ is bounded above, but why is it convergent?
      $endgroup$
      – Martin R
      2 hours ago











    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3131816%2fshow-that-the-following-sequence-converges-please-critique-my-proof%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    Consider $b_n = a_n + sum_{k=1}^{n-1} frac{(-1)^{k-1}}{k}$. Then



    $$ b_{n+1}
    = a_{n+1} + sum_{k=1}^{n} frac{(-1)^{k-1}}{k}
    leq a_n + frac{(-1)^n}{n} + sum_{k=1}^{n} frac{(-1)^{k-1}}{k}
    = b_n, $$



    which shows that $(b_n)$ is non-increasing. Moreover, since $sum_{k=1}^{infty} frac{(-1)^{k-1}}{k}$ converges by alternating series test and $(a_n)$ is non-negative, it follows that $(b_n)$ is bounded from below. Therefore $(b_n)$ converges, and so, $(a_n)$ converges as well.






    share|cite|improve this answer









    $endgroup$









    • 2




      $begingroup$
      Thank you, that's neat! One might add that this argument always works for lower-bounded $(a_n)$ with $a_{n+1}le a_n+c_n$ for some summable $(c_n)$ by setting $b_n=a_n-sum_{k=1}^{n-1}c_k$.
      $endgroup$
      – Mars Plastic
      2 hours ago


















    3












    $begingroup$

    Consider $b_n = a_n + sum_{k=1}^{n-1} frac{(-1)^{k-1}}{k}$. Then



    $$ b_{n+1}
    = a_{n+1} + sum_{k=1}^{n} frac{(-1)^{k-1}}{k}
    leq a_n + frac{(-1)^n}{n} + sum_{k=1}^{n} frac{(-1)^{k-1}}{k}
    = b_n, $$



    which shows that $(b_n)$ is non-increasing. Moreover, since $sum_{k=1}^{infty} frac{(-1)^{k-1}}{k}$ converges by alternating series test and $(a_n)$ is non-negative, it follows that $(b_n)$ is bounded from below. Therefore $(b_n)$ converges, and so, $(a_n)$ converges as well.






    share|cite|improve this answer









    $endgroup$









    • 2




      $begingroup$
      Thank you, that's neat! One might add that this argument always works for lower-bounded $(a_n)$ with $a_{n+1}le a_n+c_n$ for some summable $(c_n)$ by setting $b_n=a_n-sum_{k=1}^{n-1}c_k$.
      $endgroup$
      – Mars Plastic
      2 hours ago
















    3












    3








    3





    $begingroup$

    Consider $b_n = a_n + sum_{k=1}^{n-1} frac{(-1)^{k-1}}{k}$. Then



    $$ b_{n+1}
    = a_{n+1} + sum_{k=1}^{n} frac{(-1)^{k-1}}{k}
    leq a_n + frac{(-1)^n}{n} + sum_{k=1}^{n} frac{(-1)^{k-1}}{k}
    = b_n, $$



    which shows that $(b_n)$ is non-increasing. Moreover, since $sum_{k=1}^{infty} frac{(-1)^{k-1}}{k}$ converges by alternating series test and $(a_n)$ is non-negative, it follows that $(b_n)$ is bounded from below. Therefore $(b_n)$ converges, and so, $(a_n)$ converges as well.






    share|cite|improve this answer









    $endgroup$



    Consider $b_n = a_n + sum_{k=1}^{n-1} frac{(-1)^{k-1}}{k}$. Then



    $$ b_{n+1}
    = a_{n+1} + sum_{k=1}^{n} frac{(-1)^{k-1}}{k}
    leq a_n + frac{(-1)^n}{n} + sum_{k=1}^{n} frac{(-1)^{k-1}}{k}
    = b_n, $$



    which shows that $(b_n)$ is non-increasing. Moreover, since $sum_{k=1}^{infty} frac{(-1)^{k-1}}{k}$ converges by alternating series test and $(a_n)$ is non-negative, it follows that $(b_n)$ is bounded from below. Therefore $(b_n)$ converges, and so, $(a_n)$ converges as well.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 2 hours ago









    Sangchul LeeSangchul Lee

    95k12170276




    95k12170276








    • 2




      $begingroup$
      Thank you, that's neat! One might add that this argument always works for lower-bounded $(a_n)$ with $a_{n+1}le a_n+c_n$ for some summable $(c_n)$ by setting $b_n=a_n-sum_{k=1}^{n-1}c_k$.
      $endgroup$
      – Mars Plastic
      2 hours ago
















    • 2




      $begingroup$
      Thank you, that's neat! One might add that this argument always works for lower-bounded $(a_n)$ with $a_{n+1}le a_n+c_n$ for some summable $(c_n)$ by setting $b_n=a_n-sum_{k=1}^{n-1}c_k$.
      $endgroup$
      – Mars Plastic
      2 hours ago










    2




    2




    $begingroup$
    Thank you, that's neat! One might add that this argument always works for lower-bounded $(a_n)$ with $a_{n+1}le a_n+c_n$ for some summable $(c_n)$ by setting $b_n=a_n-sum_{k=1}^{n-1}c_k$.
    $endgroup$
    – Mars Plastic
    2 hours ago






    $begingroup$
    Thank you, that's neat! One might add that this argument always works for lower-bounded $(a_n)$ with $a_{n+1}le a_n+c_n$ for some summable $(c_n)$ by setting $b_n=a_n-sum_{k=1}^{n-1}c_k$.
    $endgroup$
    – Mars Plastic
    2 hours ago













    1












    $begingroup$

    Define $b_k := a_{2k+1}$. Then
    $$b_k leq a_{2k} + (-1)^{2k}frac{1}{2k} leq b_{k-1} + (frac{1}{2k} - frac{1}{2k-1}) leq b_{k-1}$$
    Since $b_k$ is non-negative and non-increasing: $b_k to b$.
    Suppose $a_n nrightarrow b$. Then there exists an $varepsilon > 0 $ s.t. for infinitely many $n$ holds $|a_{2n} - b| > varepsilon$.
    Assume that $|a_{2m+1}-a_m| > frac{varepsilon}{2}$ for infinitely many $m$. Then, since $a_{2m+1}- a_m leq frac{1}{2m}$ we have that
    begin{align}
    a_{2m+1} - a_m < - frac{varepsilon}{2}
    end{align}

    for infinitely many $m$. Let $M := {m geq 1 : a_{2m+1} - a_m < - frac{varepsilon}{2} text{ is fulfilled for } m }$
    begin{align*}
    d_m := 1_M (m)
    end{align*}

    This implies
    begin{align*}
    0 leq a_{2m+1} = a_1 + sum_{k=1}^{2m} (a_{k+1} - a_k ) = a_1 + sum_{k=1}^m (a_{2k+1} - a_{2k}) + sum_{k=1}^m (a_{2k} - {a_{2k-1}}) \
    leq a_1 + sum_{k=1}^m (-1)^{2k} frac{1}{2k}- frac{varepsilon}{2} d_k + sum_{k=1}^m (-1)^{2k-1}frac{1}{2k-1} to a_1 - sum_{k=1}^infty frac{varepsilon}{2} d_k + sum_{i=1}^infty (-1)^i frac{1}{i} = - infty
    end{align*}

    since $|M| = infty$ and the last series converges. This is a contradiction.
    Therefore we have that there exists $Kgeq 1$ s.t. for all $kgeq K$ it holds: $|a_{2k+1} - a_k| leq frac{varepsilon}{2}$. We can conclude that
    begin{align*}
    |a{2n+1} - b| geq |a_{2n} - b| - |a_{2n+1} - a_n| geq varepsilon - frac{varepsilon}{2} = frac{varepsilon}{2}
    end{align*}

    for infinitely $n geq K$. Contradiction. Thus $a_n to b$.






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      Define $b_k := a_{2k+1}$. Then
      $$b_k leq a_{2k} + (-1)^{2k}frac{1}{2k} leq b_{k-1} + (frac{1}{2k} - frac{1}{2k-1}) leq b_{k-1}$$
      Since $b_k$ is non-negative and non-increasing: $b_k to b$.
      Suppose $a_n nrightarrow b$. Then there exists an $varepsilon > 0 $ s.t. for infinitely many $n$ holds $|a_{2n} - b| > varepsilon$.
      Assume that $|a_{2m+1}-a_m| > frac{varepsilon}{2}$ for infinitely many $m$. Then, since $a_{2m+1}- a_m leq frac{1}{2m}$ we have that
      begin{align}
      a_{2m+1} - a_m < - frac{varepsilon}{2}
      end{align}

      for infinitely many $m$. Let $M := {m geq 1 : a_{2m+1} - a_m < - frac{varepsilon}{2} text{ is fulfilled for } m }$
      begin{align*}
      d_m := 1_M (m)
      end{align*}

      This implies
      begin{align*}
      0 leq a_{2m+1} = a_1 + sum_{k=1}^{2m} (a_{k+1} - a_k ) = a_1 + sum_{k=1}^m (a_{2k+1} - a_{2k}) + sum_{k=1}^m (a_{2k} - {a_{2k-1}}) \
      leq a_1 + sum_{k=1}^m (-1)^{2k} frac{1}{2k}- frac{varepsilon}{2} d_k + sum_{k=1}^m (-1)^{2k-1}frac{1}{2k-1} to a_1 - sum_{k=1}^infty frac{varepsilon}{2} d_k + sum_{i=1}^infty (-1)^i frac{1}{i} = - infty
      end{align*}

      since $|M| = infty$ and the last series converges. This is a contradiction.
      Therefore we have that there exists $Kgeq 1$ s.t. for all $kgeq K$ it holds: $|a_{2k+1} - a_k| leq frac{varepsilon}{2}$. We can conclude that
      begin{align*}
      |a{2n+1} - b| geq |a_{2n} - b| - |a_{2n+1} - a_n| geq varepsilon - frac{varepsilon}{2} = frac{varepsilon}{2}
      end{align*}

      for infinitely $n geq K$. Contradiction. Thus $a_n to b$.






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        Define $b_k := a_{2k+1}$. Then
        $$b_k leq a_{2k} + (-1)^{2k}frac{1}{2k} leq b_{k-1} + (frac{1}{2k} - frac{1}{2k-1}) leq b_{k-1}$$
        Since $b_k$ is non-negative and non-increasing: $b_k to b$.
        Suppose $a_n nrightarrow b$. Then there exists an $varepsilon > 0 $ s.t. for infinitely many $n$ holds $|a_{2n} - b| > varepsilon$.
        Assume that $|a_{2m+1}-a_m| > frac{varepsilon}{2}$ for infinitely many $m$. Then, since $a_{2m+1}- a_m leq frac{1}{2m}$ we have that
        begin{align}
        a_{2m+1} - a_m < - frac{varepsilon}{2}
        end{align}

        for infinitely many $m$. Let $M := {m geq 1 : a_{2m+1} - a_m < - frac{varepsilon}{2} text{ is fulfilled for } m }$
        begin{align*}
        d_m := 1_M (m)
        end{align*}

        This implies
        begin{align*}
        0 leq a_{2m+1} = a_1 + sum_{k=1}^{2m} (a_{k+1} - a_k ) = a_1 + sum_{k=1}^m (a_{2k+1} - a_{2k}) + sum_{k=1}^m (a_{2k} - {a_{2k-1}}) \
        leq a_1 + sum_{k=1}^m (-1)^{2k} frac{1}{2k}- frac{varepsilon}{2} d_k + sum_{k=1}^m (-1)^{2k-1}frac{1}{2k-1} to a_1 - sum_{k=1}^infty frac{varepsilon}{2} d_k + sum_{i=1}^infty (-1)^i frac{1}{i} = - infty
        end{align*}

        since $|M| = infty$ and the last series converges. This is a contradiction.
        Therefore we have that there exists $Kgeq 1$ s.t. for all $kgeq K$ it holds: $|a_{2k+1} - a_k| leq frac{varepsilon}{2}$. We can conclude that
        begin{align*}
        |a{2n+1} - b| geq |a_{2n} - b| - |a_{2n+1} - a_n| geq varepsilon - frac{varepsilon}{2} = frac{varepsilon}{2}
        end{align*}

        for infinitely $n geq K$. Contradiction. Thus $a_n to b$.






        share|cite|improve this answer









        $endgroup$



        Define $b_k := a_{2k+1}$. Then
        $$b_k leq a_{2k} + (-1)^{2k}frac{1}{2k} leq b_{k-1} + (frac{1}{2k} - frac{1}{2k-1}) leq b_{k-1}$$
        Since $b_k$ is non-negative and non-increasing: $b_k to b$.
        Suppose $a_n nrightarrow b$. Then there exists an $varepsilon > 0 $ s.t. for infinitely many $n$ holds $|a_{2n} - b| > varepsilon$.
        Assume that $|a_{2m+1}-a_m| > frac{varepsilon}{2}$ for infinitely many $m$. Then, since $a_{2m+1}- a_m leq frac{1}{2m}$ we have that
        begin{align}
        a_{2m+1} - a_m < - frac{varepsilon}{2}
        end{align}

        for infinitely many $m$. Let $M := {m geq 1 : a_{2m+1} - a_m < - frac{varepsilon}{2} text{ is fulfilled for } m }$
        begin{align*}
        d_m := 1_M (m)
        end{align*}

        This implies
        begin{align*}
        0 leq a_{2m+1} = a_1 + sum_{k=1}^{2m} (a_{k+1} - a_k ) = a_1 + sum_{k=1}^m (a_{2k+1} - a_{2k}) + sum_{k=1}^m (a_{2k} - {a_{2k-1}}) \
        leq a_1 + sum_{k=1}^m (-1)^{2k} frac{1}{2k}- frac{varepsilon}{2} d_k + sum_{k=1}^m (-1)^{2k-1}frac{1}{2k-1} to a_1 - sum_{k=1}^infty frac{varepsilon}{2} d_k + sum_{i=1}^infty (-1)^i frac{1}{i} = - infty
        end{align*}

        since $|M| = infty$ and the last series converges. This is a contradiction.
        Therefore we have that there exists $Kgeq 1$ s.t. for all $kgeq K$ it holds: $|a_{2k+1} - a_k| leq frac{varepsilon}{2}$. We can conclude that
        begin{align*}
        |a{2n+1} - b| geq |a_{2n} - b| - |a_{2n+1} - a_n| geq varepsilon - frac{varepsilon}{2} = frac{varepsilon}{2}
        end{align*}

        for infinitely $n geq K$. Contradiction. Thus $a_n to b$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 24 mins ago









        FalrachFalrach

        1,676224




        1,676224























            0












            $begingroup$

            Use $$sum_{k=1}^n(a_{k+1}-a_k)=a_{n+1}-a_1leqsum_{k=1}^nfrac{(-1)^k}{k}rightarrow -ln2$$






            share|cite|improve this answer











            $endgroup$









            • 1




              $begingroup$
              Be careful! The assumption is only an inequality.
              $endgroup$
              – Mars Plastic
              4 hours ago






            • 1




              $begingroup$
              @Mars Plastic I see. It was typo.
              $endgroup$
              – Michael Rozenberg
              4 hours ago










            • $begingroup$
              That shows that $(a_n)$ is bounded above, but why is it convergent?
              $endgroup$
              – Martin R
              2 hours ago
















            0












            $begingroup$

            Use $$sum_{k=1}^n(a_{k+1}-a_k)=a_{n+1}-a_1leqsum_{k=1}^nfrac{(-1)^k}{k}rightarrow -ln2$$






            share|cite|improve this answer











            $endgroup$









            • 1




              $begingroup$
              Be careful! The assumption is only an inequality.
              $endgroup$
              – Mars Plastic
              4 hours ago






            • 1




              $begingroup$
              @Mars Plastic I see. It was typo.
              $endgroup$
              – Michael Rozenberg
              4 hours ago










            • $begingroup$
              That shows that $(a_n)$ is bounded above, but why is it convergent?
              $endgroup$
              – Martin R
              2 hours ago














            0












            0








            0





            $begingroup$

            Use $$sum_{k=1}^n(a_{k+1}-a_k)=a_{n+1}-a_1leqsum_{k=1}^nfrac{(-1)^k}{k}rightarrow -ln2$$






            share|cite|improve this answer











            $endgroup$



            Use $$sum_{k=1}^n(a_{k+1}-a_k)=a_{n+1}-a_1leqsum_{k=1}^nfrac{(-1)^k}{k}rightarrow -ln2$$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited 4 hours ago

























            answered 4 hours ago









            Michael RozenbergMichael Rozenberg

            106k1893198




            106k1893198








            • 1




              $begingroup$
              Be careful! The assumption is only an inequality.
              $endgroup$
              – Mars Plastic
              4 hours ago






            • 1




              $begingroup$
              @Mars Plastic I see. It was typo.
              $endgroup$
              – Michael Rozenberg
              4 hours ago










            • $begingroup$
              That shows that $(a_n)$ is bounded above, but why is it convergent?
              $endgroup$
              – Martin R
              2 hours ago














            • 1




              $begingroup$
              Be careful! The assumption is only an inequality.
              $endgroup$
              – Mars Plastic
              4 hours ago






            • 1




              $begingroup$
              @Mars Plastic I see. It was typo.
              $endgroup$
              – Michael Rozenberg
              4 hours ago










            • $begingroup$
              That shows that $(a_n)$ is bounded above, but why is it convergent?
              $endgroup$
              – Martin R
              2 hours ago








            1




            1




            $begingroup$
            Be careful! The assumption is only an inequality.
            $endgroup$
            – Mars Plastic
            4 hours ago




            $begingroup$
            Be careful! The assumption is only an inequality.
            $endgroup$
            – Mars Plastic
            4 hours ago




            1




            1




            $begingroup$
            @Mars Plastic I see. It was typo.
            $endgroup$
            – Michael Rozenberg
            4 hours ago




            $begingroup$
            @Mars Plastic I see. It was typo.
            $endgroup$
            – Michael Rozenberg
            4 hours ago












            $begingroup$
            That shows that $(a_n)$ is bounded above, but why is it convergent?
            $endgroup$
            – Martin R
            2 hours ago




            $begingroup$
            That shows that $(a_n)$ is bounded above, but why is it convergent?
            $endgroup$
            – Martin R
            2 hours ago


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3131816%2fshow-that-the-following-sequence-converges-please-critique-my-proof%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            “%fieldName is a required field.”, in Magento2 REST API Call for GET Method Type The Next...

            How to change City field to a dropdown in Checkout step Magento 2Magento 2 : How to change UI field(s)...

            變成蝙蝠會怎樣? 參考資料 外部連結 导航菜单Thomas Nagel, "What is it like to be a...