What's the output of a record needle playing an out-of-speed recordCannibalizing a printer, how to figure out...
Why doesn't H₄O²⁺ exist?
Codimension of non-flat locus
NMaximize is not converging to a solution
Could an aircraft fly or hover using only jets of compressed air?
Languages that we cannot (dis)prove to be Context-Free
What's that red-plus icon near a text?
Which country benefited the most from UN Security Council vetoes?
How is the claim "I am in New York only if I am in America" the same as "If I am in New York, then I am in America?
Was any UN Security Council vote triple-vetoed?
Arrow those variables!
Why can't I see bouncing of switch on oscilloscope screen?
Java Casting: Java 11 throws LambdaConversionException while 1.8 does not
Can a vampire attack twice with their claws using Multiattack?
Why is 150k or 200k jobs considered good when there's 300k+ births a month?
dbcc cleantable batch size explanation
Has there ever been an airliner design involving reducing generator load by installing solar panels?
Is it legal for company to use my work email to pretend I still work there?
A case of the sniffles
When a company launches a new product do they "come out" with a new product or do they "come up" with a new product?
Filter any system log file by date or date range
Important Resources for Dark Age Civilizations?
How much of data wrangling is a data scientist's job?
Is it inappropriate for a student to attend their mentor's dissertation defense?
How to determine what difficulty is right for the game?
What's the output of a record needle playing an out-of-speed record
Cannibalizing a printer, how to figure out what some of the parts are/doWhat determines the speed of a brushless DC motorDoes the peak torque decrease at rated speed for BLDC motor?What's the relationship between ESC pwm input and output?Controlling the speed of a brushless motor with the HA13535What is the effective speed-control range of a BLDC motor?What's the relationship between DC braking torque and AC turning torque for a given current on a BLDC motorSpeed and position controle of a BLDC motor at the same timeWhat's the best starting point for rotor angle estimation for FOC?How to find the optimal speed of a BLDC motor having hall sensors? Can we change the most efficient speed through the controller?
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ margin-bottom:0;
}
$begingroup$
I'm very interested in vinyl records and analog music, and the belt of my turntable got loose. Upon such situation it piqued my curiosity, what is the output signal at the end of the arm cartridge wires for a known waveshape if the speed is not the correct one.
Say the record was mean to play sin(wt), a pure sine wave, at 33rpm, then, because of a loosen belt or any other reason, it rotates at a different RPM, how to calculate the changes in such sine wave?
I'm not considering the filters that the needle might apply on the signal, whether it is a low pass, band pass, or high pass nor any other impedances that might alter the signal in any circumstance, just a supposedly ideal needle and cartridge.
brushless-dc-motor
$endgroup$
add a comment |
$begingroup$
I'm very interested in vinyl records and analog music, and the belt of my turntable got loose. Upon such situation it piqued my curiosity, what is the output signal at the end of the arm cartridge wires for a known waveshape if the speed is not the correct one.
Say the record was mean to play sin(wt), a pure sine wave, at 33rpm, then, because of a loosen belt or any other reason, it rotates at a different RPM, how to calculate the changes in such sine wave?
I'm not considering the filters that the needle might apply on the signal, whether it is a low pass, band pass, or high pass nor any other impedances that might alter the signal in any circumstance, just a supposedly ideal needle and cartridge.
brushless-dc-motor
$endgroup$
add a comment |
$begingroup$
I'm very interested in vinyl records and analog music, and the belt of my turntable got loose. Upon such situation it piqued my curiosity, what is the output signal at the end of the arm cartridge wires for a known waveshape if the speed is not the correct one.
Say the record was mean to play sin(wt), a pure sine wave, at 33rpm, then, because of a loosen belt or any other reason, it rotates at a different RPM, how to calculate the changes in such sine wave?
I'm not considering the filters that the needle might apply on the signal, whether it is a low pass, band pass, or high pass nor any other impedances that might alter the signal in any circumstance, just a supposedly ideal needle and cartridge.
brushless-dc-motor
$endgroup$
I'm very interested in vinyl records and analog music, and the belt of my turntable got loose. Upon such situation it piqued my curiosity, what is the output signal at the end of the arm cartridge wires for a known waveshape if the speed is not the correct one.
Say the record was mean to play sin(wt), a pure sine wave, at 33rpm, then, because of a loosen belt or any other reason, it rotates at a different RPM, how to calculate the changes in such sine wave?
I'm not considering the filters that the needle might apply on the signal, whether it is a low pass, band pass, or high pass nor any other impedances that might alter the signal in any circumstance, just a supposedly ideal needle and cartridge.
brushless-dc-motor
brushless-dc-motor
edited 1 hour ago
Dave Tweed♦
123k9152266
123k9152266
asked 1 hour ago
Gabriel SantosGabriel Santos
213
213
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
Say the record was mean to play sin(wt), a pure sine wave, at 33rpm, then, because of a loosen belt or any other reason, it rotates at a different RPM, how to calculate the changes in such sine wave?
The pitch and tempo will change in proportion to the speed change. At 33 RPM it would already be musically flat as the correct speed is 331/3 RPM. A 1 kHz test tone - common on test records - would, at 33 RPM, give off $ frac {33}{33.33} text {kHz} $.
The sinewave would remain a sinewave but stretched in time and, therefore, a lower pitch.
$endgroup$
add a comment |
$begingroup$
To really simplify, a record has wiggles in the groove that correspond to the recorded sound pressure. (This ignores stereo, and any compounding, but it answers your question).
Events are recorded onto that wiggly grove as they happen -- you can think of the groove as a picture of the sound, with the time domain turned into events happening as the needle follows the groove.
If you play the record slower, all the events happen more slowly -- the singer sings slower and deeper, the orchestra does too, etc. Speeding it up does the opposite -- a normal recording, sped up, sounds like a hyperactive chipmunk.
$endgroup$
1
$begingroup$
I was surprised when I first learned how records work. It's so analog that it's amazing it works at all.
$endgroup$
– Toor
1 hour ago
add a comment |
$begingroup$
Changing the speed of the platter simply affects how fast the groove is moving under the needle, nothing else.
A sine wave with the time axis compressed or expanded is still a sine wave. In fact, since the groove is a direct mechanical representation of the original complex waveform, you still get the same waveform simply compressed or expanded in time.
$endgroup$
$begingroup$
Right, agreed, in the ideal case a a sine wave of same amplitude, but with a diferent frequency, right? The point is for a sin(wt), how the change of rotation speed will affect the frequency?
$endgroup$
– Gabriel Santos
1 hour ago
$begingroup$
It's linear -- double the speed means double the frequency. That's what compressing the time axis means.
$endgroup$
– Dave Tweed♦
1 hour ago
add a comment |
$begingroup$
Grooves are cut with frequency correction according to RIAA equalization. Playing the record off with wrong speed increases all frequencies by the same factor (corresponding to a shift left/right on the frequency axis of the doubly logarithmic transfer function diagram). Since the frequency correction is not a straight line, this does not just result in a frequency shift but also in an uneven frequency response due to recording and replaying correction no longer being proper inverses.
In addition, the equalization is done in order to reduce excessive signal amplitudes on stylus and pickup. Counteracting this by wrong speed may lead to either excessive amplitudes (electrical or mechanical) or too low signals overlaid with a relatively higher noise floor.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
});
});
}, "mathjax-editing");
StackExchange.ifUsing("editor", function () {
return StackExchange.using("schematics", function () {
StackExchange.schematics.init();
});
}, "cicuitlab");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "135"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f431010%2fwhats-the-output-of-a-record-needle-playing-an-out-of-speed-record%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Say the record was mean to play sin(wt), a pure sine wave, at 33rpm, then, because of a loosen belt or any other reason, it rotates at a different RPM, how to calculate the changes in such sine wave?
The pitch and tempo will change in proportion to the speed change. At 33 RPM it would already be musically flat as the correct speed is 331/3 RPM. A 1 kHz test tone - common on test records - would, at 33 RPM, give off $ frac {33}{33.33} text {kHz} $.
The sinewave would remain a sinewave but stretched in time and, therefore, a lower pitch.
$endgroup$
add a comment |
$begingroup$
Say the record was mean to play sin(wt), a pure sine wave, at 33rpm, then, because of a loosen belt or any other reason, it rotates at a different RPM, how to calculate the changes in such sine wave?
The pitch and tempo will change in proportion to the speed change. At 33 RPM it would already be musically flat as the correct speed is 331/3 RPM. A 1 kHz test tone - common on test records - would, at 33 RPM, give off $ frac {33}{33.33} text {kHz} $.
The sinewave would remain a sinewave but stretched in time and, therefore, a lower pitch.
$endgroup$
add a comment |
$begingroup$
Say the record was mean to play sin(wt), a pure sine wave, at 33rpm, then, because of a loosen belt or any other reason, it rotates at a different RPM, how to calculate the changes in such sine wave?
The pitch and tempo will change in proportion to the speed change. At 33 RPM it would already be musically flat as the correct speed is 331/3 RPM. A 1 kHz test tone - common on test records - would, at 33 RPM, give off $ frac {33}{33.33} text {kHz} $.
The sinewave would remain a sinewave but stretched in time and, therefore, a lower pitch.
$endgroup$
Say the record was mean to play sin(wt), a pure sine wave, at 33rpm, then, because of a loosen belt or any other reason, it rotates at a different RPM, how to calculate the changes in such sine wave?
The pitch and tempo will change in proportion to the speed change. At 33 RPM it would already be musically flat as the correct speed is 331/3 RPM. A 1 kHz test tone - common on test records - would, at 33 RPM, give off $ frac {33}{33.33} text {kHz} $.
The sinewave would remain a sinewave but stretched in time and, therefore, a lower pitch.
edited 52 mins ago
K H
2,360215
2,360215
answered 1 hour ago
TransistorTransistor
88.2k785189
88.2k785189
add a comment |
add a comment |
$begingroup$
To really simplify, a record has wiggles in the groove that correspond to the recorded sound pressure. (This ignores stereo, and any compounding, but it answers your question).
Events are recorded onto that wiggly grove as they happen -- you can think of the groove as a picture of the sound, with the time domain turned into events happening as the needle follows the groove.
If you play the record slower, all the events happen more slowly -- the singer sings slower and deeper, the orchestra does too, etc. Speeding it up does the opposite -- a normal recording, sped up, sounds like a hyperactive chipmunk.
$endgroup$
1
$begingroup$
I was surprised when I first learned how records work. It's so analog that it's amazing it works at all.
$endgroup$
– Toor
1 hour ago
add a comment |
$begingroup$
To really simplify, a record has wiggles in the groove that correspond to the recorded sound pressure. (This ignores stereo, and any compounding, but it answers your question).
Events are recorded onto that wiggly grove as they happen -- you can think of the groove as a picture of the sound, with the time domain turned into events happening as the needle follows the groove.
If you play the record slower, all the events happen more slowly -- the singer sings slower and deeper, the orchestra does too, etc. Speeding it up does the opposite -- a normal recording, sped up, sounds like a hyperactive chipmunk.
$endgroup$
1
$begingroup$
I was surprised when I first learned how records work. It's so analog that it's amazing it works at all.
$endgroup$
– Toor
1 hour ago
add a comment |
$begingroup$
To really simplify, a record has wiggles in the groove that correspond to the recorded sound pressure. (This ignores stereo, and any compounding, but it answers your question).
Events are recorded onto that wiggly grove as they happen -- you can think of the groove as a picture of the sound, with the time domain turned into events happening as the needle follows the groove.
If you play the record slower, all the events happen more slowly -- the singer sings slower and deeper, the orchestra does too, etc. Speeding it up does the opposite -- a normal recording, sped up, sounds like a hyperactive chipmunk.
$endgroup$
To really simplify, a record has wiggles in the groove that correspond to the recorded sound pressure. (This ignores stereo, and any compounding, but it answers your question).
Events are recorded onto that wiggly grove as they happen -- you can think of the groove as a picture of the sound, with the time domain turned into events happening as the needle follows the groove.
If you play the record slower, all the events happen more slowly -- the singer sings slower and deeper, the orchestra does too, etc. Speeding it up does the opposite -- a normal recording, sped up, sounds like a hyperactive chipmunk.
edited 51 mins ago
K H
2,360215
2,360215
answered 1 hour ago
TimWescottTimWescott
6,5991416
6,5991416
1
$begingroup$
I was surprised when I first learned how records work. It's so analog that it's amazing it works at all.
$endgroup$
– Toor
1 hour ago
add a comment |
1
$begingroup$
I was surprised when I first learned how records work. It's so analog that it's amazing it works at all.
$endgroup$
– Toor
1 hour ago
1
1
$begingroup$
I was surprised when I first learned how records work. It's so analog that it's amazing it works at all.
$endgroup$
– Toor
1 hour ago
$begingroup$
I was surprised when I first learned how records work. It's so analog that it's amazing it works at all.
$endgroup$
– Toor
1 hour ago
add a comment |
$begingroup$
Changing the speed of the platter simply affects how fast the groove is moving under the needle, nothing else.
A sine wave with the time axis compressed or expanded is still a sine wave. In fact, since the groove is a direct mechanical representation of the original complex waveform, you still get the same waveform simply compressed or expanded in time.
$endgroup$
$begingroup$
Right, agreed, in the ideal case a a sine wave of same amplitude, but with a diferent frequency, right? The point is for a sin(wt), how the change of rotation speed will affect the frequency?
$endgroup$
– Gabriel Santos
1 hour ago
$begingroup$
It's linear -- double the speed means double the frequency. That's what compressing the time axis means.
$endgroup$
– Dave Tweed♦
1 hour ago
add a comment |
$begingroup$
Changing the speed of the platter simply affects how fast the groove is moving under the needle, nothing else.
A sine wave with the time axis compressed or expanded is still a sine wave. In fact, since the groove is a direct mechanical representation of the original complex waveform, you still get the same waveform simply compressed or expanded in time.
$endgroup$
$begingroup$
Right, agreed, in the ideal case a a sine wave of same amplitude, but with a diferent frequency, right? The point is for a sin(wt), how the change of rotation speed will affect the frequency?
$endgroup$
– Gabriel Santos
1 hour ago
$begingroup$
It's linear -- double the speed means double the frequency. That's what compressing the time axis means.
$endgroup$
– Dave Tweed♦
1 hour ago
add a comment |
$begingroup$
Changing the speed of the platter simply affects how fast the groove is moving under the needle, nothing else.
A sine wave with the time axis compressed or expanded is still a sine wave. In fact, since the groove is a direct mechanical representation of the original complex waveform, you still get the same waveform simply compressed or expanded in time.
$endgroup$
Changing the speed of the platter simply affects how fast the groove is moving under the needle, nothing else.
A sine wave with the time axis compressed or expanded is still a sine wave. In fact, since the groove is a direct mechanical representation of the original complex waveform, you still get the same waveform simply compressed or expanded in time.
answered 1 hour ago
Dave Tweed♦Dave Tweed
123k9152266
123k9152266
$begingroup$
Right, agreed, in the ideal case a a sine wave of same amplitude, but with a diferent frequency, right? The point is for a sin(wt), how the change of rotation speed will affect the frequency?
$endgroup$
– Gabriel Santos
1 hour ago
$begingroup$
It's linear -- double the speed means double the frequency. That's what compressing the time axis means.
$endgroup$
– Dave Tweed♦
1 hour ago
add a comment |
$begingroup$
Right, agreed, in the ideal case a a sine wave of same amplitude, but with a diferent frequency, right? The point is for a sin(wt), how the change of rotation speed will affect the frequency?
$endgroup$
– Gabriel Santos
1 hour ago
$begingroup$
It's linear -- double the speed means double the frequency. That's what compressing the time axis means.
$endgroup$
– Dave Tweed♦
1 hour ago
$begingroup$
Right, agreed, in the ideal case a a sine wave of same amplitude, but with a diferent frequency, right? The point is for a sin(wt), how the change of rotation speed will affect the frequency?
$endgroup$
– Gabriel Santos
1 hour ago
$begingroup$
Right, agreed, in the ideal case a a sine wave of same amplitude, but with a diferent frequency, right? The point is for a sin(wt), how the change of rotation speed will affect the frequency?
$endgroup$
– Gabriel Santos
1 hour ago
$begingroup$
It's linear -- double the speed means double the frequency. That's what compressing the time axis means.
$endgroup$
– Dave Tweed♦
1 hour ago
$begingroup$
It's linear -- double the speed means double the frequency. That's what compressing the time axis means.
$endgroup$
– Dave Tweed♦
1 hour ago
add a comment |
$begingroup$
Grooves are cut with frequency correction according to RIAA equalization. Playing the record off with wrong speed increases all frequencies by the same factor (corresponding to a shift left/right on the frequency axis of the doubly logarithmic transfer function diagram). Since the frequency correction is not a straight line, this does not just result in a frequency shift but also in an uneven frequency response due to recording and replaying correction no longer being proper inverses.
In addition, the equalization is done in order to reduce excessive signal amplitudes on stylus and pickup. Counteracting this by wrong speed may lead to either excessive amplitudes (electrical or mechanical) or too low signals overlaid with a relatively higher noise floor.
$endgroup$
add a comment |
$begingroup$
Grooves are cut with frequency correction according to RIAA equalization. Playing the record off with wrong speed increases all frequencies by the same factor (corresponding to a shift left/right on the frequency axis of the doubly logarithmic transfer function diagram). Since the frequency correction is not a straight line, this does not just result in a frequency shift but also in an uneven frequency response due to recording and replaying correction no longer being proper inverses.
In addition, the equalization is done in order to reduce excessive signal amplitudes on stylus and pickup. Counteracting this by wrong speed may lead to either excessive amplitudes (electrical or mechanical) or too low signals overlaid with a relatively higher noise floor.
$endgroup$
add a comment |
$begingroup$
Grooves are cut with frequency correction according to RIAA equalization. Playing the record off with wrong speed increases all frequencies by the same factor (corresponding to a shift left/right on the frequency axis of the doubly logarithmic transfer function diagram). Since the frequency correction is not a straight line, this does not just result in a frequency shift but also in an uneven frequency response due to recording and replaying correction no longer being proper inverses.
In addition, the equalization is done in order to reduce excessive signal amplitudes on stylus and pickup. Counteracting this by wrong speed may lead to either excessive amplitudes (electrical or mechanical) or too low signals overlaid with a relatively higher noise floor.
$endgroup$
Grooves are cut with frequency correction according to RIAA equalization. Playing the record off with wrong speed increases all frequencies by the same factor (corresponding to a shift left/right on the frequency axis of the doubly logarithmic transfer function diagram). Since the frequency correction is not a straight line, this does not just result in a frequency shift but also in an uneven frequency response due to recording and replaying correction no longer being proper inverses.
In addition, the equalization is done in order to reduce excessive signal amplitudes on stylus and pickup. Counteracting this by wrong speed may lead to either excessive amplitudes (electrical or mechanical) or too low signals overlaid with a relatively higher noise floor.
answered 1 min ago
user217611
add a comment |
add a comment |
Thanks for contributing an answer to Electrical Engineering Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f431010%2fwhats-the-output-of-a-record-needle-playing-an-out-of-speed-record%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown