Calculation of line of sight system gain Planned maintenance scheduled April 23, 2019 at 23:30...
Why does BitLocker not use RSA?
Understanding piped commands in GNU/Linux
Did any compiler fully use 80-bit floating point?
Short story about astronauts fertilizing soil with their own bodies
Is there a spell that can create a permanent fire?
What does 丫 mean? 丫是什么意思?
Table formatting with tabularx?
Flight departed from the gate 5 min before scheduled departure time. Refund options
What was the last profitable war?
What is a more techy Technical Writer job title that isn't cutesy or confusing?
By what mechanism was the 2017 UK General Election called?
What is the proper term for etching or digging of wall to hide conduit of cables
Diophantine equation 3^a+1=3^b+5^c
What is "Lambda" in Heston's original paper on stochastic volatility models?
Adapting the Chinese Remainder Theorem (CRT) for integers to polynomials
Twin's vs. Twins'
How to name indistinguishable henchmen in a screenplay?
Why is there so little support for joining EFTA in the British parliament?
An isoperimetric-type inequality inside a cube
Calculation of line of sight system gain
New Order #6: Easter Egg
.bashrc alias for a command with fixed second parameter
malloc in main() or malloc in another function: allocating memory for a struct and its members
Why did Bronn offer to be Tyrion Lannister's champion in trial by combat?
Calculation of line of sight system gain
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)
Announcing the arrival of Valued Associate #679: Cesar Manara
Unicorn Meta Zoo #1: Why another podcast?Assumptions for Hurst exponent calculationGain function calculation (frequency response)Magnitude-squared Coherence calculation inconsistenceCalculation of the correlation of two sinusoidalsSystem invertabilityDominant eigenvectors of an unknown matrixhow do you compute the channel gain from path loss index in wireless communication?Causal system, order of numerator and denominatorCalculation of actual analog input from bipolar ADC's outputcoding gain and shaping gain in SCMA
$begingroup$
I'm trying to calculate the overall gain of the transmitter-receiver system for a line-of-sight wireless transmission with the following properties:
- A carrier frequency of 0.5GHz
- A distance between the transmitter and receiver antennas of 2Km
- A parabolic antenna in the transmitter with a face area of 0.8m2
- An infinitesimal dipole in the receiver
From what I can understand/determine the equation for calculating gain is:
G = 4π*effective area/carrier wavelength/carrier wavelength OR
G = 4π*carrier frequency2*effective area/speed of light2
My question is how to calculate the overall gain of the system. Is it as simple as calculating the gain of the transmitter and receiver separately and then adding them together?
signal-analysis
New contributor
$endgroup$
add a comment |
$begingroup$
I'm trying to calculate the overall gain of the transmitter-receiver system for a line-of-sight wireless transmission with the following properties:
- A carrier frequency of 0.5GHz
- A distance between the transmitter and receiver antennas of 2Km
- A parabolic antenna in the transmitter with a face area of 0.8m2
- An infinitesimal dipole in the receiver
From what I can understand/determine the equation for calculating gain is:
G = 4π*effective area/carrier wavelength/carrier wavelength OR
G = 4π*carrier frequency2*effective area/speed of light2
My question is how to calculate the overall gain of the system. Is it as simple as calculating the gain of the transmitter and receiver separately and then adding them together?
signal-analysis
New contributor
$endgroup$
add a comment |
$begingroup$
I'm trying to calculate the overall gain of the transmitter-receiver system for a line-of-sight wireless transmission with the following properties:
- A carrier frequency of 0.5GHz
- A distance between the transmitter and receiver antennas of 2Km
- A parabolic antenna in the transmitter with a face area of 0.8m2
- An infinitesimal dipole in the receiver
From what I can understand/determine the equation for calculating gain is:
G = 4π*effective area/carrier wavelength/carrier wavelength OR
G = 4π*carrier frequency2*effective area/speed of light2
My question is how to calculate the overall gain of the system. Is it as simple as calculating the gain of the transmitter and receiver separately and then adding them together?
signal-analysis
New contributor
$endgroup$
I'm trying to calculate the overall gain of the transmitter-receiver system for a line-of-sight wireless transmission with the following properties:
- A carrier frequency of 0.5GHz
- A distance between the transmitter and receiver antennas of 2Km
- A parabolic antenna in the transmitter with a face area of 0.8m2
- An infinitesimal dipole in the receiver
From what I can understand/determine the equation for calculating gain is:
G = 4π*effective area/carrier wavelength/carrier wavelength OR
G = 4π*carrier frequency2*effective area/speed of light2
My question is how to calculate the overall gain of the system. Is it as simple as calculating the gain of the transmitter and receiver separately and then adding them together?
signal-analysis
signal-analysis
New contributor
New contributor
New contributor
asked 2 hours ago
Lily HaynesLily Haynes
61
61
New contributor
New contributor
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You need to multiply the antenna gains, not add them. Specifically, if the free-space loss (attenuation) is $L_{FS}$, the transmitter antenna has gain $G_T$, and the receiver antenna has gain $G_R$, then the total system loss $L$ is $$ L = frac{L_{FS}}{G_T G_R}. $$ The system gain $G$ is $$G = frac{1}{L} = G_{FS}G _T G_R, $$ where $G_{FS}$ is the free-space gain.
Of course, if you're doing the calculation in decibels, then the antenna gains are added: $$ G_{dB} = G_{FS,dB} + G_{T,dB} + G_{R,dB}. $$
$endgroup$
$begingroup$
Thank you that's really helpful but I'm a bit confused as to how to calculate the free-space gain that you talked about. I understand how to calculate the free-space loss, but I can't seem to find any information about free-space gain?
$endgroup$
– Lily Haynes
55 mins ago
$begingroup$
I focused on the gain since that is what you mention in your question. The gain is just the reciprocal of the loss: $G = 1/L$. If all you need is the loss, you can use the first formula in my answer; in decibels, it'd be $L_{dB} = L_{FS,dB} - G_{T,dB} - G_{R,dB}$.
$endgroup$
– MBaz
17 mins ago
$begingroup$
Perfect, I understand now, thank you for your help!
$endgroup$
– Lily Haynes
15 mins ago
$begingroup$
You're welcome; glad to be of help!
$endgroup$
– MBaz
14 mins ago
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "295"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Lily Haynes is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdsp.stackexchange.com%2fquestions%2f56847%2fcalculation-of-line-of-sight-system-gain%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You need to multiply the antenna gains, not add them. Specifically, if the free-space loss (attenuation) is $L_{FS}$, the transmitter antenna has gain $G_T$, and the receiver antenna has gain $G_R$, then the total system loss $L$ is $$ L = frac{L_{FS}}{G_T G_R}. $$ The system gain $G$ is $$G = frac{1}{L} = G_{FS}G _T G_R, $$ where $G_{FS}$ is the free-space gain.
Of course, if you're doing the calculation in decibels, then the antenna gains are added: $$ G_{dB} = G_{FS,dB} + G_{T,dB} + G_{R,dB}. $$
$endgroup$
$begingroup$
Thank you that's really helpful but I'm a bit confused as to how to calculate the free-space gain that you talked about. I understand how to calculate the free-space loss, but I can't seem to find any information about free-space gain?
$endgroup$
– Lily Haynes
55 mins ago
$begingroup$
I focused on the gain since that is what you mention in your question. The gain is just the reciprocal of the loss: $G = 1/L$. If all you need is the loss, you can use the first formula in my answer; in decibels, it'd be $L_{dB} = L_{FS,dB} - G_{T,dB} - G_{R,dB}$.
$endgroup$
– MBaz
17 mins ago
$begingroup$
Perfect, I understand now, thank you for your help!
$endgroup$
– Lily Haynes
15 mins ago
$begingroup$
You're welcome; glad to be of help!
$endgroup$
– MBaz
14 mins ago
add a comment |
$begingroup$
You need to multiply the antenna gains, not add them. Specifically, if the free-space loss (attenuation) is $L_{FS}$, the transmitter antenna has gain $G_T$, and the receiver antenna has gain $G_R$, then the total system loss $L$ is $$ L = frac{L_{FS}}{G_T G_R}. $$ The system gain $G$ is $$G = frac{1}{L} = G_{FS}G _T G_R, $$ where $G_{FS}$ is the free-space gain.
Of course, if you're doing the calculation in decibels, then the antenna gains are added: $$ G_{dB} = G_{FS,dB} + G_{T,dB} + G_{R,dB}. $$
$endgroup$
$begingroup$
Thank you that's really helpful but I'm a bit confused as to how to calculate the free-space gain that you talked about. I understand how to calculate the free-space loss, but I can't seem to find any information about free-space gain?
$endgroup$
– Lily Haynes
55 mins ago
$begingroup$
I focused on the gain since that is what you mention in your question. The gain is just the reciprocal of the loss: $G = 1/L$. If all you need is the loss, you can use the first formula in my answer; in decibels, it'd be $L_{dB} = L_{FS,dB} - G_{T,dB} - G_{R,dB}$.
$endgroup$
– MBaz
17 mins ago
$begingroup$
Perfect, I understand now, thank you for your help!
$endgroup$
– Lily Haynes
15 mins ago
$begingroup$
You're welcome; glad to be of help!
$endgroup$
– MBaz
14 mins ago
add a comment |
$begingroup$
You need to multiply the antenna gains, not add them. Specifically, if the free-space loss (attenuation) is $L_{FS}$, the transmitter antenna has gain $G_T$, and the receiver antenna has gain $G_R$, then the total system loss $L$ is $$ L = frac{L_{FS}}{G_T G_R}. $$ The system gain $G$ is $$G = frac{1}{L} = G_{FS}G _T G_R, $$ where $G_{FS}$ is the free-space gain.
Of course, if you're doing the calculation in decibels, then the antenna gains are added: $$ G_{dB} = G_{FS,dB} + G_{T,dB} + G_{R,dB}. $$
$endgroup$
You need to multiply the antenna gains, not add them. Specifically, if the free-space loss (attenuation) is $L_{FS}$, the transmitter antenna has gain $G_T$, and the receiver antenna has gain $G_R$, then the total system loss $L$ is $$ L = frac{L_{FS}}{G_T G_R}. $$ The system gain $G$ is $$G = frac{1}{L} = G_{FS}G _T G_R, $$ where $G_{FS}$ is the free-space gain.
Of course, if you're doing the calculation in decibels, then the antenna gains are added: $$ G_{dB} = G_{FS,dB} + G_{T,dB} + G_{R,dB}. $$
answered 1 hour ago
MBazMBaz
9,08041733
9,08041733
$begingroup$
Thank you that's really helpful but I'm a bit confused as to how to calculate the free-space gain that you talked about. I understand how to calculate the free-space loss, but I can't seem to find any information about free-space gain?
$endgroup$
– Lily Haynes
55 mins ago
$begingroup$
I focused on the gain since that is what you mention in your question. The gain is just the reciprocal of the loss: $G = 1/L$. If all you need is the loss, you can use the first formula in my answer; in decibels, it'd be $L_{dB} = L_{FS,dB} - G_{T,dB} - G_{R,dB}$.
$endgroup$
– MBaz
17 mins ago
$begingroup$
Perfect, I understand now, thank you for your help!
$endgroup$
– Lily Haynes
15 mins ago
$begingroup$
You're welcome; glad to be of help!
$endgroup$
– MBaz
14 mins ago
add a comment |
$begingroup$
Thank you that's really helpful but I'm a bit confused as to how to calculate the free-space gain that you talked about. I understand how to calculate the free-space loss, but I can't seem to find any information about free-space gain?
$endgroup$
– Lily Haynes
55 mins ago
$begingroup$
I focused on the gain since that is what you mention in your question. The gain is just the reciprocal of the loss: $G = 1/L$. If all you need is the loss, you can use the first formula in my answer; in decibels, it'd be $L_{dB} = L_{FS,dB} - G_{T,dB} - G_{R,dB}$.
$endgroup$
– MBaz
17 mins ago
$begingroup$
Perfect, I understand now, thank you for your help!
$endgroup$
– Lily Haynes
15 mins ago
$begingroup$
You're welcome; glad to be of help!
$endgroup$
– MBaz
14 mins ago
$begingroup$
Thank you that's really helpful but I'm a bit confused as to how to calculate the free-space gain that you talked about. I understand how to calculate the free-space loss, but I can't seem to find any information about free-space gain?
$endgroup$
– Lily Haynes
55 mins ago
$begingroup$
Thank you that's really helpful but I'm a bit confused as to how to calculate the free-space gain that you talked about. I understand how to calculate the free-space loss, but I can't seem to find any information about free-space gain?
$endgroup$
– Lily Haynes
55 mins ago
$begingroup$
I focused on the gain since that is what you mention in your question. The gain is just the reciprocal of the loss: $G = 1/L$. If all you need is the loss, you can use the first formula in my answer; in decibels, it'd be $L_{dB} = L_{FS,dB} - G_{T,dB} - G_{R,dB}$.
$endgroup$
– MBaz
17 mins ago
$begingroup$
I focused on the gain since that is what you mention in your question. The gain is just the reciprocal of the loss: $G = 1/L$. If all you need is the loss, you can use the first formula in my answer; in decibels, it'd be $L_{dB} = L_{FS,dB} - G_{T,dB} - G_{R,dB}$.
$endgroup$
– MBaz
17 mins ago
$begingroup$
Perfect, I understand now, thank you for your help!
$endgroup$
– Lily Haynes
15 mins ago
$begingroup$
Perfect, I understand now, thank you for your help!
$endgroup$
– Lily Haynes
15 mins ago
$begingroup$
You're welcome; glad to be of help!
$endgroup$
– MBaz
14 mins ago
$begingroup$
You're welcome; glad to be of help!
$endgroup$
– MBaz
14 mins ago
add a comment |
Lily Haynes is a new contributor. Be nice, and check out our Code of Conduct.
Lily Haynes is a new contributor. Be nice, and check out our Code of Conduct.
Lily Haynes is a new contributor. Be nice, and check out our Code of Conduct.
Lily Haynes is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Signal Processing Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdsp.stackexchange.com%2fquestions%2f56847%2fcalculation-of-line-of-sight-system-gain%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown