泊松比 导航菜单编编

Multi tool use
固体力学无量纲比率
材料力學弹性力学無因次量等向性剪切模數楊氏模數
泊松式比(英语:Poisson's ratio),又译泊松比,是材料力學和弹性力学中的名詞,定義為材料受拉伸或壓縮力時,材料會發生變形,而其橫向應變與縱向應變的比值,是一無因次量的物理量。
当材料在一个方向被压缩,它会在与该方向垂直的另外两个方向伸长,这就是泊松现象,泊松比是用来反映泊松现象的无量纲的物理量。
在均匀等向性材料中,剪切模數G、楊氏模數E 和泊松比ν{displaystyle nu }三个量中只有两个是独立的,它们之间存在以下关系:
G=E2(1+ν){displaystyle G={frac {E}{2(1+nu )}}}
|
|
换算公式 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
均质各向同性线弹性材料具有独特的弹性性质,因此知道弹性模量中的任意两种,就可由下列换算公式求出其他所有的弹性模量。 | ||||||||||
(λ,G){displaystyle (lambda ,,G)} |
(E,G){displaystyle (E,,G)} |
(K,λ){displaystyle (K,,lambda )} |
(K,G){displaystyle (K,,G)} |
(λ,ν){displaystyle (lambda ,,nu )} |
(G,ν){displaystyle (G,,nu )} |
(E,ν){displaystyle (E,,nu )} |
(K,ν){displaystyle (K,,nu )} |
(K,E){displaystyle (K,,E)} |
(M,G){displaystyle (M,,G)} |
|
K={displaystyle K=,} |
λ+2G3{displaystyle lambda +{tfrac {2G}{3}}} |
EG3(3G−E){displaystyle {tfrac {EG}{3(3G-E)}}} |
λ(1+ν)3ν{displaystyle {tfrac {lambda (1+nu )}{3nu }}} |
2G(1+ν)3(1−2ν){displaystyle {tfrac {2G(1+nu )}{3(1-2nu )}}} |
E3(1−2ν){displaystyle {tfrac {E}{3(1-2nu )}}} |
M−4G3{displaystyle M-{tfrac {4G}{3}}} |
||||
E={displaystyle E=,} |
G(3λ+2G)λ+G{displaystyle {tfrac {G(3lambda +2G)}{lambda +G}}} |
9K(K−λ)3K−λ{displaystyle {tfrac {9K(K-lambda )}{3K-lambda }}} |
9KG3K+G{displaystyle {tfrac {9KG}{3K+G}}} |
λ(1+ν)(1−2ν)ν{displaystyle {tfrac {lambda (1+nu )(1-2nu )}{nu }}} |
2G(1+ν){displaystyle 2G(1+nu ),} |
3K(1−2ν){displaystyle 3K(1-2nu ),} |
G(3M−4G)M−G{displaystyle {tfrac {G(3M-4G)}{M-G}}} |
|||
λ={displaystyle lambda =,} |
G(E−2G)3G−E{displaystyle {tfrac {G(E-2G)}{3G-E}}} |
K−2G3{displaystyle K-{tfrac {2G}{3}}} |
2Gν1−2ν{displaystyle {tfrac {2Gnu }{1-2nu }}} |
Eν(1+ν)(1−2ν){displaystyle {tfrac {Enu }{(1+nu )(1-2nu )}}} |
3Kν1+ν{displaystyle {tfrac {3Knu }{1+nu }}} |
3K(3K−E)9K−E{displaystyle {tfrac {3K(3K-E)}{9K-E}}} |
M−2G{displaystyle M-2G,} |
|||
G={displaystyle G=,} |
3(K−λ)2{displaystyle {tfrac {3(K-lambda )}{2}}} |
λ(1−2ν)2ν{displaystyle {tfrac {lambda (1-2nu )}{2nu }}} |
E2(1+ν){displaystyle {tfrac {E}{2(1+nu )}}} |
3K(1−2ν)2(1+ν){displaystyle {tfrac {3K(1-2nu )}{2(1+nu )}}} |
3KE9K−E{displaystyle {tfrac {3KE}{9K-E}}} |
|||||
ν={displaystyle nu =,} |
λ2(λ+G){displaystyle {tfrac {lambda }{2(lambda +G)}}} |
E2G−1{displaystyle {tfrac {E}{2G}}-1} |
λ3K−λ{displaystyle {tfrac {lambda }{3K-lambda }}} |
3K−2G2(3K+G){displaystyle {tfrac {3K-2G}{2(3K+G)}}} |
3K−E6K{displaystyle {tfrac {3K-E}{6K}}} |
M−2G2M−2G{displaystyle {tfrac {M-2G}{2M-2G}}} |
||||
M={displaystyle M=,} |
λ+2G{displaystyle lambda +2G,} |
G(4G−E)3G−E{displaystyle {tfrac {G(4G-E)}{3G-E}}} |
3K−2λ{displaystyle 3K-2lambda ,} |
K+4G3{displaystyle K+{tfrac {4G}{3}}} |
λ(1−ν)ν{displaystyle {tfrac {lambda (1-nu )}{nu }}} |
2G(1−ν)1−2ν{displaystyle {tfrac {2G(1-nu )}{1-2nu }}} |
E(1−ν)(1+ν)(1−2ν){displaystyle {tfrac {E(1-nu )}{(1+nu )(1-2nu )}}} |
3K(1−ν)1+ν{displaystyle {tfrac {3K(1-nu )}{1+nu }}} |
3K(3K+E)9K−E{displaystyle {tfrac {3K(3K+E)}{9K-E}}} |
0kOzHBzpqvuQA,C7zSrt1Hq dCQBCRMfEehz1dinlCVH8slnk 7a,vbg0Kz2TQousQMTVhBh1oz j7sPlXm 0g6 2N Rr