泊松比 导航菜单


固体力学无量纲比率


材料力學弹性力学無因次量等向性剪切模數楊氏模數














泊松式比(英语:Poisson's ratio),又译泊松比,是材料力學和弹性力学中的名詞,定義為材料受拉伸或壓縮力時,材料會發生變形,而其橫向應變與縱向應變的比值,是一無因次量的物理量。


当材料在一个方向被压缩,它会在与该方向垂直的另外两个方向伸长,这就是泊松现象,泊松比是用来反映泊松现象的无量纲的物理量。


在均匀等向性材料中,剪切模數G、楊氏模數E泊松比ν{displaystyle nu }三个量中只有两个是独立的,它们之间存在以下关系:


G=E2(1+ν){displaystyle G={frac {E}{2(1+nu )}}}






































































































换算公式
均质各向同性线弹性材料具有独特的弹性性质,因此知道弹性模量中的任意两种,就可由下列换算公式求出其他所有的弹性模量。


,G){displaystyle (lambda ,,G)}

(E,G){displaystyle (E,,G)}

(K,λ){displaystyle (K,,lambda )}

(K,G){displaystyle (K,,G)}

){displaystyle (lambda ,,nu )}

(G,ν){displaystyle (G,,nu )}

(E,ν){displaystyle (E,,nu )}

(K,ν){displaystyle (K,,nu )}

(K,E){displaystyle (K,,E)}

(M,G){displaystyle (M,,G)}

K={displaystyle K=,}

λ+2G3{displaystyle lambda +{tfrac {2G}{3}}}

EG3(3G−E){displaystyle {tfrac {EG}{3(3G-E)}}}



λ(1+ν)3ν{displaystyle {tfrac {lambda (1+nu )}{3nu }}}

2G(1+ν)3(1−){displaystyle {tfrac {2G(1+nu )}{3(1-2nu )}}}

E3(1−){displaystyle {tfrac {E}{3(1-2nu )}}}



M−4G3{displaystyle M-{tfrac {4G}{3}}}

E={displaystyle E=,}

G(3λ+2G)λ+G{displaystyle {tfrac {G(3lambda +2G)}{lambda +G}}}


9K(K−λ)3K−λ{displaystyle {tfrac {9K(K-lambda )}{3K-lambda }}}

9KG3K+G{displaystyle {tfrac {9KG}{3K+G}}}

λ(1+ν)(1−{displaystyle {tfrac {lambda (1+nu )(1-2nu )}{nu }}}

2G(1+ν){displaystyle 2G(1+nu ),}


3K(1−){displaystyle 3K(1-2nu ),}


G(3M−4G)M−G{displaystyle {tfrac {G(3M-4G)}{M-G}}}

λ={displaystyle lambda =,}


G(E−2G)3G−E{displaystyle {tfrac {G(E-2G)}{3G-E}}}


K−2G3{displaystyle K-{tfrac {2G}{3}}}


2Gν1−{displaystyle {tfrac {2Gnu }{1-2nu }}}

(1+ν)(1−){displaystyle {tfrac {Enu }{(1+nu )(1-2nu )}}}

3Kν1+ν{displaystyle {tfrac {3Knu }{1+nu }}}

3K(3K−E)9K−E{displaystyle {tfrac {3K(3K-E)}{9K-E}}}

M−2G{displaystyle M-2G,}

G={displaystyle G=,}



3(K−λ)2{displaystyle {tfrac {3(K-lambda )}{2}}}


λ(1−)2ν{displaystyle {tfrac {lambda (1-2nu )}{2nu }}}


E2(1+ν){displaystyle {tfrac {E}{2(1+nu )}}}

3K(1−)2(1+ν){displaystyle {tfrac {3K(1-2nu )}{2(1+nu )}}}

3KE9K−E{displaystyle {tfrac {3KE}{9K-E}}}


ν={displaystyle nu =,}

λ2(λ+G){displaystyle {tfrac {lambda }{2(lambda +G)}}}

E2G−1{displaystyle {tfrac {E}{2G}}-1}

λ3K−λ{displaystyle {tfrac {lambda }{3K-lambda }}}

3K−2G2(3K+G){displaystyle {tfrac {3K-2G}{2(3K+G)}}}





3K−E6K{displaystyle {tfrac {3K-E}{6K}}}

M−2G2M−2G{displaystyle {tfrac {M-2G}{2M-2G}}}

M={displaystyle M=,}

λ+2G{displaystyle lambda +2G,}

G(4G−E)3G−E{displaystyle {tfrac {G(4G-E)}{3G-E}}}

3K−{displaystyle 3K-2lambda ,}

K+4G3{displaystyle K+{tfrac {4G}{3}}}

λ(1−ν{displaystyle {tfrac {lambda (1-nu )}{nu }}}

2G(1−ν)1−{displaystyle {tfrac {2G(1-nu )}{1-2nu }}}

E(1−ν)(1+ν)(1−){displaystyle {tfrac {E(1-nu )}{(1+nu )(1-2nu )}}}

3K(1−ν)1+ν{displaystyle {tfrac {3K(1-nu )}{1+nu }}}

3K(3K+E)9K−E{displaystyle {tfrac {3K(3K+E)}{9K-E}}}




Popular posts from this blog

“%fieldName is a required field.”, in Magento2 REST API Call for GET Method Type The Next...

How to change City field to a dropdown in Checkout step Magento 2Magento 2 : How to change UI field(s)...

變成蝙蝠會怎樣? 參考資料 外部連結 导航菜单Thomas Nagel, "What is it like to be a...