Advance Calculus Limit question The Next CEO of Stack OverflowLimit finding of an...
Avoiding the "not like other girls" trope?
Could a dragon use its wings to swim?
Was the Stack Exchange "Happy April Fools" page fitting with the 90s code?
How to coordinate airplane tickets?
Incomplete cube
How did scripture get the name bible?
Is the 21st century's idea of "freedom of speech" based on precedent?
How can a day be of 24 hours?
How badly should I try to prevent a user from XSSing themselves?
Man transported from Alternate World into ours by a Neutrino Detector
Could you use a laser beam as a modulated carrier wave for radio signal?
Find a path from s to t using as few red nodes as possible
Is this a new Fibonacci Identity?
Which acid/base does a strong base/acid react when added to a buffer solution?
Would a grinding machine be a simple and workable propulsion system for an interplanetary spacecraft?
How to find if SQL server backup is encrypted with TDE without restoring the backup
Compensation for working overtime on Saturdays
Can I cast Thunderwave and be at the center of its bottom face, but not be affected by it?
Are British MPs missing the point, with these 'Indicative Votes'?
How to implement Comparable so it is consistent with identity-equality
Read/write a pipe-delimited file line by line with some simple text manipulation
Advance Calculus Limit question
Can this transistor (2N2222) take 6 V on emitter-base? Am I reading the datasheet incorrectly?
What is the difference between 'contrib' and 'non-free' packages repositories?
Advance Calculus Limit question
The Next CEO of Stack OverflowLimit finding of an indeterminate formI need compute a rational limit that involves rootsComplex Limit Without L'hopital'sLimit of $x^2e^x $as $x$ approaches negative infinity without using L'hopital's ruleSolving limit of radicals without L'Hopital $lim_{xto 64} dfrac{sqrt x - 8}{sqrt[3] x - 4} $Solve a limit without L'Hopital: $ lim_{xto0} frac{ln(cos5x)}{ln(cos7x)}$Limit question - L'Hopital's rule doesn't seem to workHow can I solve this limit without L'Hopital rule?Find a limit of a function W/OUT l'Hopital's rule.Compute $lim_{x rightarrow 4} frac{(2x^2 - 7x -4)}{(-x^2 + 8x - 16)}$
$begingroup$
I'm trying to compute this limit without the use of L'Hopital's rule:
$$lim_{x to 0^{+}} frac{4^{-1/x}+4^{1/x}}{4^{-1/x}-4^{1/x}}$$
I've been trying to multiply by the lcd and doing other creative stuff... anyone have any suggestions on theorems or techniques?
calculus limits limits-without-lhopital
$endgroup$
add a comment |
$begingroup$
I'm trying to compute this limit without the use of L'Hopital's rule:
$$lim_{x to 0^{+}} frac{4^{-1/x}+4^{1/x}}{4^{-1/x}-4^{1/x}}$$
I've been trying to multiply by the lcd and doing other creative stuff... anyone have any suggestions on theorems or techniques?
calculus limits limits-without-lhopital
$endgroup$
add a comment |
$begingroup$
I'm trying to compute this limit without the use of L'Hopital's rule:
$$lim_{x to 0^{+}} frac{4^{-1/x}+4^{1/x}}{4^{-1/x}-4^{1/x}}$$
I've been trying to multiply by the lcd and doing other creative stuff... anyone have any suggestions on theorems or techniques?
calculus limits limits-without-lhopital
$endgroup$
I'm trying to compute this limit without the use of L'Hopital's rule:
$$lim_{x to 0^{+}} frac{4^{-1/x}+4^{1/x}}{4^{-1/x}-4^{1/x}}$$
I've been trying to multiply by the lcd and doing other creative stuff... anyone have any suggestions on theorems or techniques?
calculus limits limits-without-lhopital
calculus limits limits-without-lhopital
edited 5 hours ago
Foobaz John
22.9k41552
22.9k41552
asked 6 hours ago
Kevin CalderonKevin Calderon
513
513
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Write the limit as
$$
lim_{xto 0+}frac{1+4^{-2/x}}{-1+4^{-2/x}}
$$
and use the fact that
$$
lim_{xto 0+}frac{-2}{x}=-infty.
$$
to find that the limit equals $-1$.
$endgroup$
add a comment |
$begingroup$
A substitution can be helpful, as it transforms the expression into a rational function:
- Set $y=4^{frac{1}{x}}$ and consider $y to +infty$
begin{eqnarray*} frac{4^{-1/x}+4^{1/x}}{4^{-1/x}-4^{1/x}}
& stackrel{y=4^{frac{1}{x}}}{=} & frac{frac{1}{y}+y}{frac{1}{y}-y} \
& = & frac{frac{1}{y^2}+1}{frac{1}{y^2}-1} \
& stackrel{y to +infty}{longrightarrow} & frac{0+1}{0-1} = -1
end{eqnarray*}
$endgroup$
add a comment |
$begingroup$
$$lim_{xto 0^+}dfrac{4^{-1/x}+4^{1/x}}{4^{-1/x}-4^{1/x}}=lim_{xto 0^+}dfrac{4^{-2/x}+1}{4^{-2/x}-1}$$
Clearly as $xto 0^+$, $2/xto infty$. Since the power of $4$ is $-2/x$, it must go to $0$. Effectively we have $frac{0+1}{0-1}=-1$. Hence the required limit is $-1$.
$endgroup$
add a comment |
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171288%2fadvance-calculus-limit-question%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Write the limit as
$$
lim_{xto 0+}frac{1+4^{-2/x}}{-1+4^{-2/x}}
$$
and use the fact that
$$
lim_{xto 0+}frac{-2}{x}=-infty.
$$
to find that the limit equals $-1$.
$endgroup$
add a comment |
$begingroup$
Write the limit as
$$
lim_{xto 0+}frac{1+4^{-2/x}}{-1+4^{-2/x}}
$$
and use the fact that
$$
lim_{xto 0+}frac{-2}{x}=-infty.
$$
to find that the limit equals $-1$.
$endgroup$
add a comment |
$begingroup$
Write the limit as
$$
lim_{xto 0+}frac{1+4^{-2/x}}{-1+4^{-2/x}}
$$
and use the fact that
$$
lim_{xto 0+}frac{-2}{x}=-infty.
$$
to find that the limit equals $-1$.
$endgroup$
Write the limit as
$$
lim_{xto 0+}frac{1+4^{-2/x}}{-1+4^{-2/x}}
$$
and use the fact that
$$
lim_{xto 0+}frac{-2}{x}=-infty.
$$
to find that the limit equals $-1$.
answered 5 hours ago
Foobaz JohnFoobaz John
22.9k41552
22.9k41552
add a comment |
add a comment |
$begingroup$
A substitution can be helpful, as it transforms the expression into a rational function:
- Set $y=4^{frac{1}{x}}$ and consider $y to +infty$
begin{eqnarray*} frac{4^{-1/x}+4^{1/x}}{4^{-1/x}-4^{1/x}}
& stackrel{y=4^{frac{1}{x}}}{=} & frac{frac{1}{y}+y}{frac{1}{y}-y} \
& = & frac{frac{1}{y^2}+1}{frac{1}{y^2}-1} \
& stackrel{y to +infty}{longrightarrow} & frac{0+1}{0-1} = -1
end{eqnarray*}
$endgroup$
add a comment |
$begingroup$
A substitution can be helpful, as it transforms the expression into a rational function:
- Set $y=4^{frac{1}{x}}$ and consider $y to +infty$
begin{eqnarray*} frac{4^{-1/x}+4^{1/x}}{4^{-1/x}-4^{1/x}}
& stackrel{y=4^{frac{1}{x}}}{=} & frac{frac{1}{y}+y}{frac{1}{y}-y} \
& = & frac{frac{1}{y^2}+1}{frac{1}{y^2}-1} \
& stackrel{y to +infty}{longrightarrow} & frac{0+1}{0-1} = -1
end{eqnarray*}
$endgroup$
add a comment |
$begingroup$
A substitution can be helpful, as it transforms the expression into a rational function:
- Set $y=4^{frac{1}{x}}$ and consider $y to +infty$
begin{eqnarray*} frac{4^{-1/x}+4^{1/x}}{4^{-1/x}-4^{1/x}}
& stackrel{y=4^{frac{1}{x}}}{=} & frac{frac{1}{y}+y}{frac{1}{y}-y} \
& = & frac{frac{1}{y^2}+1}{frac{1}{y^2}-1} \
& stackrel{y to +infty}{longrightarrow} & frac{0+1}{0-1} = -1
end{eqnarray*}
$endgroup$
A substitution can be helpful, as it transforms the expression into a rational function:
- Set $y=4^{frac{1}{x}}$ and consider $y to +infty$
begin{eqnarray*} frac{4^{-1/x}+4^{1/x}}{4^{-1/x}-4^{1/x}}
& stackrel{y=4^{frac{1}{x}}}{=} & frac{frac{1}{y}+y}{frac{1}{y}-y} \
& = & frac{frac{1}{y^2}+1}{frac{1}{y^2}-1} \
& stackrel{y to +infty}{longrightarrow} & frac{0+1}{0-1} = -1
end{eqnarray*}
answered 1 hour ago
trancelocationtrancelocation
13.4k1827
13.4k1827
add a comment |
add a comment |
$begingroup$
$$lim_{xto 0^+}dfrac{4^{-1/x}+4^{1/x}}{4^{-1/x}-4^{1/x}}=lim_{xto 0^+}dfrac{4^{-2/x}+1}{4^{-2/x}-1}$$
Clearly as $xto 0^+$, $2/xto infty$. Since the power of $4$ is $-2/x$, it must go to $0$. Effectively we have $frac{0+1}{0-1}=-1$. Hence the required limit is $-1$.
$endgroup$
add a comment |
$begingroup$
$$lim_{xto 0^+}dfrac{4^{-1/x}+4^{1/x}}{4^{-1/x}-4^{1/x}}=lim_{xto 0^+}dfrac{4^{-2/x}+1}{4^{-2/x}-1}$$
Clearly as $xto 0^+$, $2/xto infty$. Since the power of $4$ is $-2/x$, it must go to $0$. Effectively we have $frac{0+1}{0-1}=-1$. Hence the required limit is $-1$.
$endgroup$
add a comment |
$begingroup$
$$lim_{xto 0^+}dfrac{4^{-1/x}+4^{1/x}}{4^{-1/x}-4^{1/x}}=lim_{xto 0^+}dfrac{4^{-2/x}+1}{4^{-2/x}-1}$$
Clearly as $xto 0^+$, $2/xto infty$. Since the power of $4$ is $-2/x$, it must go to $0$. Effectively we have $frac{0+1}{0-1}=-1$. Hence the required limit is $-1$.
$endgroup$
$$lim_{xto 0^+}dfrac{4^{-1/x}+4^{1/x}}{4^{-1/x}-4^{1/x}}=lim_{xto 0^+}dfrac{4^{-2/x}+1}{4^{-2/x}-1}$$
Clearly as $xto 0^+$, $2/xto infty$. Since the power of $4$ is $-2/x$, it must go to $0$. Effectively we have $frac{0+1}{0-1}=-1$. Hence the required limit is $-1$.
answered 28 mins ago
Paras KhoslaParas Khosla
2,758423
2,758423
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171288%2fadvance-calculus-limit-question%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown