Showing the closure of a compact subset need not be compactIsn't every subset of a compact space...
Is it legal to have the "// (c) 2019 John Smith" header in all files when there are hundreds of contributors?
What are these boxed doors outside store fronts in New York?
What do you call something that goes against the spirit of the law, but is legal when interpreting the law to the letter?
Prevent a directory in /tmp from being deleted
How can I fix this gap between bookcases I made?
Why is this code 6.5x slower with optimizations enabled?
A newer friend of my brother's gave him a load of baseball cards that are supposedly extremely valuable. Is this a scam?
Can I make popcorn with any corn?
Why has Russell's definition of numbers using equivalence classes been finally abandoned? ( If it has actually been abandoned).
What typically incentivizes a professor to change jobs to a lower ranking university?
How old can references or sources in a thesis be?
A Journey Through Space and Time
Why is the design of haulage companies so “special”?
What is GPS' 19 year rollover and does it present a cybersecurity issue?
Concept of linear mappings are confusing me
Is there really no realistic way for a skeleton monster to move around without magic?
When blogging recipes, how can I support both readers who want the narrative/journey and ones who want the printer-friendly recipe?
Why is "Reports" in sentence down without "The"
How is it possible for user's password to be changed after storage was encrypted? (on OS X, Android)
how to create a data type and make it available in all Databases?
Does the radius of the Spirit Guardians spell depend on the size of the caster?
A function which translates a sentence to title-case
Where to refill my bottle in India?
Is Social Media Science Fiction?
Showing the closure of a compact subset need not be compact
Isn't every subset of a compact space compact?Example on closure of a subset of a subspace of a topological space in Munkres's TopologyCompact subset of a non compact topological spaceWhy subspace of a compact space not compactIs $mathbb{R}$ compact under the co-countable and co-finite topologies?Show that $mathbb{Q}$ is not locally compact with a characterization of local compactnessIs the closure of a compact set compact?A topological space is locally compact then here is an open base at each point has all of its set with compact closure$Bbb{R}^omega$ is not Locally CompactShowing a subset of $Bbb R^2$ is compact with the relative topology
$begingroup$
Could someone tell me if my line of reasoning is correct here:
Say we have the topological space $(mathbb{N}, T)$ comprising of the empty set together with all subsets of $Bbb N$ that contain the element $1$.
I want to show that the closure of a compact set in this topology need not be compact.
Let $A equiv {1, ...., n}$.
Then, this set is compact as it can be covered by a single open set in $T$.
Its limit points are every number in $Bbb N$ which is not 1.
Therefore, its closure is $overline{A} = Bbb N$
If the above is true then I get confused because it seems that $Bbb N$ is an open set in $T$ so therefore can it not also be covered with a single open set in T and so would be compact as well? (I know intuitively that compact, being in some sense a measure of 'smallness', would indicate that $Bbb N$ shouldn't be compact but I don't see how to get that line of reasoning using the properties of this topology)
general-topology proof-writing compactness
$endgroup$
|
show 1 more comment
$begingroup$
Could someone tell me if my line of reasoning is correct here:
Say we have the topological space $(mathbb{N}, T)$ comprising of the empty set together with all subsets of $Bbb N$ that contain the element $1$.
I want to show that the closure of a compact set in this topology need not be compact.
Let $A equiv {1, ...., n}$.
Then, this set is compact as it can be covered by a single open set in $T$.
Its limit points are every number in $Bbb N$ which is not 1.
Therefore, its closure is $overline{A} = Bbb N$
If the above is true then I get confused because it seems that $Bbb N$ is an open set in $T$ so therefore can it not also be covered with a single open set in T and so would be compact as well? (I know intuitively that compact, being in some sense a measure of 'smallness', would indicate that $Bbb N$ shouldn't be compact but I don't see how to get that line of reasoning using the properties of this topology)
general-topology proof-writing compactness
$endgroup$
3
$begingroup$
Your reasoning for $A$ being compact seems incorrect. $A = {1, ldots, n}$ is compact because given an open cover ${ B_alpha }$ of $A$, we can find $B_{alpha_k} ni k$ for each $k in A$ so that ${ B_{alpha_k} }_{k=1}^n$ covers $A$. $mathbb{N}$ is not compact in your topology because the infinite cover ${ {1, ldots, n} }_{n=1}^infty$ of $mathbb{N}$ cannot be reduce to a finite subcover.
$endgroup$
– parsiad
4 hours ago
$begingroup$
@parsiad Ah okay , so I should think of each one of the points in A needing to be covered by an open set in T rather than the set itself being able to be fully covered by a single set. So then using that fact I could then use the rest of my argument to say that $Bbb N$ is not compact as given an open cover ${B_alpha}$ of $Bbb N$ then for each $nin Bbb N$ we can cover it with a set from T but we need infinitely many to do it for all points so it's not compact ?
$endgroup$
– can'tcauchy
4 hours ago
1
$begingroup$
I'm not sure what you mean, but you should use this definition of compactness. I've included an argument for why $mathbb{N}$ is not compact in my comment above that you can revisit after understanding the linked definition.
$endgroup$
– parsiad
4 hours ago
$begingroup$
@parsiad what you said in your comment is what I meant. Thanks ! But maybe the part I was unclear about was that I think I had been considering the set A={1,...n} as being able to be covered by the set {1,....n} in T, but as it says in the definition we have to think about A as being covered by points in a collection of open sets within A, and this can be reduced to a finite number of open sets which do this . Are the limit point and closure part of my argument is fine ,correct ?
$endgroup$
– can'tcauchy
4 hours ago
$begingroup$
Yes, I think that part of your argument is correct. I posted a detailed answer anyways.
$endgroup$
– parsiad
4 hours ago
|
show 1 more comment
$begingroup$
Could someone tell me if my line of reasoning is correct here:
Say we have the topological space $(mathbb{N}, T)$ comprising of the empty set together with all subsets of $Bbb N$ that contain the element $1$.
I want to show that the closure of a compact set in this topology need not be compact.
Let $A equiv {1, ...., n}$.
Then, this set is compact as it can be covered by a single open set in $T$.
Its limit points are every number in $Bbb N$ which is not 1.
Therefore, its closure is $overline{A} = Bbb N$
If the above is true then I get confused because it seems that $Bbb N$ is an open set in $T$ so therefore can it not also be covered with a single open set in T and so would be compact as well? (I know intuitively that compact, being in some sense a measure of 'smallness', would indicate that $Bbb N$ shouldn't be compact but I don't see how to get that line of reasoning using the properties of this topology)
general-topology proof-writing compactness
$endgroup$
Could someone tell me if my line of reasoning is correct here:
Say we have the topological space $(mathbb{N}, T)$ comprising of the empty set together with all subsets of $Bbb N$ that contain the element $1$.
I want to show that the closure of a compact set in this topology need not be compact.
Let $A equiv {1, ...., n}$.
Then, this set is compact as it can be covered by a single open set in $T$.
Its limit points are every number in $Bbb N$ which is not 1.
Therefore, its closure is $overline{A} = Bbb N$
If the above is true then I get confused because it seems that $Bbb N$ is an open set in $T$ so therefore can it not also be covered with a single open set in T and so would be compact as well? (I know intuitively that compact, being in some sense a measure of 'smallness', would indicate that $Bbb N$ shouldn't be compact but I don't see how to get that line of reasoning using the properties of this topology)
general-topology proof-writing compactness
general-topology proof-writing compactness
edited 4 hours ago
Austin Mohr
20.8k35299
20.8k35299
asked 5 hours ago
can'tcauchycan'tcauchy
1,023417
1,023417
3
$begingroup$
Your reasoning for $A$ being compact seems incorrect. $A = {1, ldots, n}$ is compact because given an open cover ${ B_alpha }$ of $A$, we can find $B_{alpha_k} ni k$ for each $k in A$ so that ${ B_{alpha_k} }_{k=1}^n$ covers $A$. $mathbb{N}$ is not compact in your topology because the infinite cover ${ {1, ldots, n} }_{n=1}^infty$ of $mathbb{N}$ cannot be reduce to a finite subcover.
$endgroup$
– parsiad
4 hours ago
$begingroup$
@parsiad Ah okay , so I should think of each one of the points in A needing to be covered by an open set in T rather than the set itself being able to be fully covered by a single set. So then using that fact I could then use the rest of my argument to say that $Bbb N$ is not compact as given an open cover ${B_alpha}$ of $Bbb N$ then for each $nin Bbb N$ we can cover it with a set from T but we need infinitely many to do it for all points so it's not compact ?
$endgroup$
– can'tcauchy
4 hours ago
1
$begingroup$
I'm not sure what you mean, but you should use this definition of compactness. I've included an argument for why $mathbb{N}$ is not compact in my comment above that you can revisit after understanding the linked definition.
$endgroup$
– parsiad
4 hours ago
$begingroup$
@parsiad what you said in your comment is what I meant. Thanks ! But maybe the part I was unclear about was that I think I had been considering the set A={1,...n} as being able to be covered by the set {1,....n} in T, but as it says in the definition we have to think about A as being covered by points in a collection of open sets within A, and this can be reduced to a finite number of open sets which do this . Are the limit point and closure part of my argument is fine ,correct ?
$endgroup$
– can'tcauchy
4 hours ago
$begingroup$
Yes, I think that part of your argument is correct. I posted a detailed answer anyways.
$endgroup$
– parsiad
4 hours ago
|
show 1 more comment
3
$begingroup$
Your reasoning for $A$ being compact seems incorrect. $A = {1, ldots, n}$ is compact because given an open cover ${ B_alpha }$ of $A$, we can find $B_{alpha_k} ni k$ for each $k in A$ so that ${ B_{alpha_k} }_{k=1}^n$ covers $A$. $mathbb{N}$ is not compact in your topology because the infinite cover ${ {1, ldots, n} }_{n=1}^infty$ of $mathbb{N}$ cannot be reduce to a finite subcover.
$endgroup$
– parsiad
4 hours ago
$begingroup$
@parsiad Ah okay , so I should think of each one of the points in A needing to be covered by an open set in T rather than the set itself being able to be fully covered by a single set. So then using that fact I could then use the rest of my argument to say that $Bbb N$ is not compact as given an open cover ${B_alpha}$ of $Bbb N$ then for each $nin Bbb N$ we can cover it with a set from T but we need infinitely many to do it for all points so it's not compact ?
$endgroup$
– can'tcauchy
4 hours ago
1
$begingroup$
I'm not sure what you mean, but you should use this definition of compactness. I've included an argument for why $mathbb{N}$ is not compact in my comment above that you can revisit after understanding the linked definition.
$endgroup$
– parsiad
4 hours ago
$begingroup$
@parsiad what you said in your comment is what I meant. Thanks ! But maybe the part I was unclear about was that I think I had been considering the set A={1,...n} as being able to be covered by the set {1,....n} in T, but as it says in the definition we have to think about A as being covered by points in a collection of open sets within A, and this can be reduced to a finite number of open sets which do this . Are the limit point and closure part of my argument is fine ,correct ?
$endgroup$
– can'tcauchy
4 hours ago
$begingroup$
Yes, I think that part of your argument is correct. I posted a detailed answer anyways.
$endgroup$
– parsiad
4 hours ago
3
3
$begingroup$
Your reasoning for $A$ being compact seems incorrect. $A = {1, ldots, n}$ is compact because given an open cover ${ B_alpha }$ of $A$, we can find $B_{alpha_k} ni k$ for each $k in A$ so that ${ B_{alpha_k} }_{k=1}^n$ covers $A$. $mathbb{N}$ is not compact in your topology because the infinite cover ${ {1, ldots, n} }_{n=1}^infty$ of $mathbb{N}$ cannot be reduce to a finite subcover.
$endgroup$
– parsiad
4 hours ago
$begingroup$
Your reasoning for $A$ being compact seems incorrect. $A = {1, ldots, n}$ is compact because given an open cover ${ B_alpha }$ of $A$, we can find $B_{alpha_k} ni k$ for each $k in A$ so that ${ B_{alpha_k} }_{k=1}^n$ covers $A$. $mathbb{N}$ is not compact in your topology because the infinite cover ${ {1, ldots, n} }_{n=1}^infty$ of $mathbb{N}$ cannot be reduce to a finite subcover.
$endgroup$
– parsiad
4 hours ago
$begingroup$
@parsiad Ah okay , so I should think of each one of the points in A needing to be covered by an open set in T rather than the set itself being able to be fully covered by a single set. So then using that fact I could then use the rest of my argument to say that $Bbb N$ is not compact as given an open cover ${B_alpha}$ of $Bbb N$ then for each $nin Bbb N$ we can cover it with a set from T but we need infinitely many to do it for all points so it's not compact ?
$endgroup$
– can'tcauchy
4 hours ago
$begingroup$
@parsiad Ah okay , so I should think of each one of the points in A needing to be covered by an open set in T rather than the set itself being able to be fully covered by a single set. So then using that fact I could then use the rest of my argument to say that $Bbb N$ is not compact as given an open cover ${B_alpha}$ of $Bbb N$ then for each $nin Bbb N$ we can cover it with a set from T but we need infinitely many to do it for all points so it's not compact ?
$endgroup$
– can'tcauchy
4 hours ago
1
1
$begingroup$
I'm not sure what you mean, but you should use this definition of compactness. I've included an argument for why $mathbb{N}$ is not compact in my comment above that you can revisit after understanding the linked definition.
$endgroup$
– parsiad
4 hours ago
$begingroup$
I'm not sure what you mean, but you should use this definition of compactness. I've included an argument for why $mathbb{N}$ is not compact in my comment above that you can revisit after understanding the linked definition.
$endgroup$
– parsiad
4 hours ago
$begingroup$
@parsiad what you said in your comment is what I meant. Thanks ! But maybe the part I was unclear about was that I think I had been considering the set A={1,...n} as being able to be covered by the set {1,....n} in T, but as it says in the definition we have to think about A as being covered by points in a collection of open sets within A, and this can be reduced to a finite number of open sets which do this . Are the limit point and closure part of my argument is fine ,correct ?
$endgroup$
– can'tcauchy
4 hours ago
$begingroup$
@parsiad what you said in your comment is what I meant. Thanks ! But maybe the part I was unclear about was that I think I had been considering the set A={1,...n} as being able to be covered by the set {1,....n} in T, but as it says in the definition we have to think about A as being covered by points in a collection of open sets within A, and this can be reduced to a finite number of open sets which do this . Are the limit point and closure part of my argument is fine ,correct ?
$endgroup$
– can'tcauchy
4 hours ago
$begingroup$
Yes, I think that part of your argument is correct. I posted a detailed answer anyways.
$endgroup$
– parsiad
4 hours ago
$begingroup$
Yes, I think that part of your argument is correct. I posted a detailed answer anyways.
$endgroup$
– parsiad
4 hours ago
|
show 1 more comment
2 Answers
2
active
oldest
votes
$begingroup$
Definition. Let $A subset X$ where $(X, tau)$ is a topological space.
We call $A$ compact if for each collection ${ B_alpha } subset tau$ such that $cup_alpha B_alpha supset A$, we can find a finite subcollection ${B_{alpha_1}, ldots, B_{alpha_n}}$ such that $B_{alpha_1 } cup cdots cup B_{alpha_n} supset A$.
Remark. We call the original collection an open cover and the subcollection a finite subcover.
Consider the topology in your original question.
Let $A equiv {1, ldots, n}$ and $mathscr{B} equiv {B_alpha}$ be an open cover of $A$.
Let $k$ be a member of $A$.
Since $mathscr{B}$ is a cover of $A$, we can find $alpha_k$ such that $k in B_{alpha_k}$.
Therefore, ${B_{alpha_k}}_{k=1}^n$ covers $A$, and hence $A$ is compact.
Next, let $C_n equiv {1,ldots,n}$ and consider the cover $mathscr{C} equiv {C_n}_{n=1}^infty$ of $mathbb{N}$.
Let $mathscr{C}^prime$ be a finite subcollection of $mathscr{C}$.
Note that the set $bigcup_{C in mathscr{C}^prime} C$ has a maximum element (call it $N$) and hence this subcollection does not cover $mathbb{N}$ (because none of its members contain $N+1$).
This shows that $mathbb{N}$ is not compact.
Next, let $n > 1$.
Since any open set in your topology must have 1 as a member, it follows that $n$ is a limit point of $A$.
Therefore, $overline{A} = mathbb{N}$.
In summary, you have just found an example of a topology for which the closure of a compact set is not necessarily compact.
This is only possible for non-Hausdorff spaces.
Indeed, your topology is non-Hausdorff since any two non-empty neighbourhoods are not disjoint because they both contain the point 1.
$endgroup$
add a comment |
$begingroup$
$A={1}$ is compact as any cover of it has a one-element subcover.
$overline{A} = mathbb N$ which is not compact, as witnessed by the open cover $${{1,2},{1,3},{1,4},ldots, {1,n}, ldots}$$ of $mathbb N$ from which we cannot omit a member (or it wouldn't cover), so has no finite subcover.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3179012%2fshowing-the-closure-of-a-compact-subset-need-not-be-compact%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Definition. Let $A subset X$ where $(X, tau)$ is a topological space.
We call $A$ compact if for each collection ${ B_alpha } subset tau$ such that $cup_alpha B_alpha supset A$, we can find a finite subcollection ${B_{alpha_1}, ldots, B_{alpha_n}}$ such that $B_{alpha_1 } cup cdots cup B_{alpha_n} supset A$.
Remark. We call the original collection an open cover and the subcollection a finite subcover.
Consider the topology in your original question.
Let $A equiv {1, ldots, n}$ and $mathscr{B} equiv {B_alpha}$ be an open cover of $A$.
Let $k$ be a member of $A$.
Since $mathscr{B}$ is a cover of $A$, we can find $alpha_k$ such that $k in B_{alpha_k}$.
Therefore, ${B_{alpha_k}}_{k=1}^n$ covers $A$, and hence $A$ is compact.
Next, let $C_n equiv {1,ldots,n}$ and consider the cover $mathscr{C} equiv {C_n}_{n=1}^infty$ of $mathbb{N}$.
Let $mathscr{C}^prime$ be a finite subcollection of $mathscr{C}$.
Note that the set $bigcup_{C in mathscr{C}^prime} C$ has a maximum element (call it $N$) and hence this subcollection does not cover $mathbb{N}$ (because none of its members contain $N+1$).
This shows that $mathbb{N}$ is not compact.
Next, let $n > 1$.
Since any open set in your topology must have 1 as a member, it follows that $n$ is a limit point of $A$.
Therefore, $overline{A} = mathbb{N}$.
In summary, you have just found an example of a topology for which the closure of a compact set is not necessarily compact.
This is only possible for non-Hausdorff spaces.
Indeed, your topology is non-Hausdorff since any two non-empty neighbourhoods are not disjoint because they both contain the point 1.
$endgroup$
add a comment |
$begingroup$
Definition. Let $A subset X$ where $(X, tau)$ is a topological space.
We call $A$ compact if for each collection ${ B_alpha } subset tau$ such that $cup_alpha B_alpha supset A$, we can find a finite subcollection ${B_{alpha_1}, ldots, B_{alpha_n}}$ such that $B_{alpha_1 } cup cdots cup B_{alpha_n} supset A$.
Remark. We call the original collection an open cover and the subcollection a finite subcover.
Consider the topology in your original question.
Let $A equiv {1, ldots, n}$ and $mathscr{B} equiv {B_alpha}$ be an open cover of $A$.
Let $k$ be a member of $A$.
Since $mathscr{B}$ is a cover of $A$, we can find $alpha_k$ such that $k in B_{alpha_k}$.
Therefore, ${B_{alpha_k}}_{k=1}^n$ covers $A$, and hence $A$ is compact.
Next, let $C_n equiv {1,ldots,n}$ and consider the cover $mathscr{C} equiv {C_n}_{n=1}^infty$ of $mathbb{N}$.
Let $mathscr{C}^prime$ be a finite subcollection of $mathscr{C}$.
Note that the set $bigcup_{C in mathscr{C}^prime} C$ has a maximum element (call it $N$) and hence this subcollection does not cover $mathbb{N}$ (because none of its members contain $N+1$).
This shows that $mathbb{N}$ is not compact.
Next, let $n > 1$.
Since any open set in your topology must have 1 as a member, it follows that $n$ is a limit point of $A$.
Therefore, $overline{A} = mathbb{N}$.
In summary, you have just found an example of a topology for which the closure of a compact set is not necessarily compact.
This is only possible for non-Hausdorff spaces.
Indeed, your topology is non-Hausdorff since any two non-empty neighbourhoods are not disjoint because they both contain the point 1.
$endgroup$
add a comment |
$begingroup$
Definition. Let $A subset X$ where $(X, tau)$ is a topological space.
We call $A$ compact if for each collection ${ B_alpha } subset tau$ such that $cup_alpha B_alpha supset A$, we can find a finite subcollection ${B_{alpha_1}, ldots, B_{alpha_n}}$ such that $B_{alpha_1 } cup cdots cup B_{alpha_n} supset A$.
Remark. We call the original collection an open cover and the subcollection a finite subcover.
Consider the topology in your original question.
Let $A equiv {1, ldots, n}$ and $mathscr{B} equiv {B_alpha}$ be an open cover of $A$.
Let $k$ be a member of $A$.
Since $mathscr{B}$ is a cover of $A$, we can find $alpha_k$ such that $k in B_{alpha_k}$.
Therefore, ${B_{alpha_k}}_{k=1}^n$ covers $A$, and hence $A$ is compact.
Next, let $C_n equiv {1,ldots,n}$ and consider the cover $mathscr{C} equiv {C_n}_{n=1}^infty$ of $mathbb{N}$.
Let $mathscr{C}^prime$ be a finite subcollection of $mathscr{C}$.
Note that the set $bigcup_{C in mathscr{C}^prime} C$ has a maximum element (call it $N$) and hence this subcollection does not cover $mathbb{N}$ (because none of its members contain $N+1$).
This shows that $mathbb{N}$ is not compact.
Next, let $n > 1$.
Since any open set in your topology must have 1 as a member, it follows that $n$ is a limit point of $A$.
Therefore, $overline{A} = mathbb{N}$.
In summary, you have just found an example of a topology for which the closure of a compact set is not necessarily compact.
This is only possible for non-Hausdorff spaces.
Indeed, your topology is non-Hausdorff since any two non-empty neighbourhoods are not disjoint because they both contain the point 1.
$endgroup$
Definition. Let $A subset X$ where $(X, tau)$ is a topological space.
We call $A$ compact if for each collection ${ B_alpha } subset tau$ such that $cup_alpha B_alpha supset A$, we can find a finite subcollection ${B_{alpha_1}, ldots, B_{alpha_n}}$ such that $B_{alpha_1 } cup cdots cup B_{alpha_n} supset A$.
Remark. We call the original collection an open cover and the subcollection a finite subcover.
Consider the topology in your original question.
Let $A equiv {1, ldots, n}$ and $mathscr{B} equiv {B_alpha}$ be an open cover of $A$.
Let $k$ be a member of $A$.
Since $mathscr{B}$ is a cover of $A$, we can find $alpha_k$ such that $k in B_{alpha_k}$.
Therefore, ${B_{alpha_k}}_{k=1}^n$ covers $A$, and hence $A$ is compact.
Next, let $C_n equiv {1,ldots,n}$ and consider the cover $mathscr{C} equiv {C_n}_{n=1}^infty$ of $mathbb{N}$.
Let $mathscr{C}^prime$ be a finite subcollection of $mathscr{C}$.
Note that the set $bigcup_{C in mathscr{C}^prime} C$ has a maximum element (call it $N$) and hence this subcollection does not cover $mathbb{N}$ (because none of its members contain $N+1$).
This shows that $mathbb{N}$ is not compact.
Next, let $n > 1$.
Since any open set in your topology must have 1 as a member, it follows that $n$ is a limit point of $A$.
Therefore, $overline{A} = mathbb{N}$.
In summary, you have just found an example of a topology for which the closure of a compact set is not necessarily compact.
This is only possible for non-Hausdorff spaces.
Indeed, your topology is non-Hausdorff since any two non-empty neighbourhoods are not disjoint because they both contain the point 1.
answered 4 hours ago
parsiadparsiad
18.7k32453
18.7k32453
add a comment |
add a comment |
$begingroup$
$A={1}$ is compact as any cover of it has a one-element subcover.
$overline{A} = mathbb N$ which is not compact, as witnessed by the open cover $${{1,2},{1,3},{1,4},ldots, {1,n}, ldots}$$ of $mathbb N$ from which we cannot omit a member (or it wouldn't cover), so has no finite subcover.
$endgroup$
add a comment |
$begingroup$
$A={1}$ is compact as any cover of it has a one-element subcover.
$overline{A} = mathbb N$ which is not compact, as witnessed by the open cover $${{1,2},{1,3},{1,4},ldots, {1,n}, ldots}$$ of $mathbb N$ from which we cannot omit a member (or it wouldn't cover), so has no finite subcover.
$endgroup$
add a comment |
$begingroup$
$A={1}$ is compact as any cover of it has a one-element subcover.
$overline{A} = mathbb N$ which is not compact, as witnessed by the open cover $${{1,2},{1,3},{1,4},ldots, {1,n}, ldots}$$ of $mathbb N$ from which we cannot omit a member (or it wouldn't cover), so has no finite subcover.
$endgroup$
$A={1}$ is compact as any cover of it has a one-element subcover.
$overline{A} = mathbb N$ which is not compact, as witnessed by the open cover $${{1,2},{1,3},{1,4},ldots, {1,n}, ldots}$$ of $mathbb N$ from which we cannot omit a member (or it wouldn't cover), so has no finite subcover.
answered 1 hour ago
Henno BrandsmaHenno Brandsma
115k349125
115k349125
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3179012%2fshowing-the-closure-of-a-compact-subset-need-not-be-compact%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
Your reasoning for $A$ being compact seems incorrect. $A = {1, ldots, n}$ is compact because given an open cover ${ B_alpha }$ of $A$, we can find $B_{alpha_k} ni k$ for each $k in A$ so that ${ B_{alpha_k} }_{k=1}^n$ covers $A$. $mathbb{N}$ is not compact in your topology because the infinite cover ${ {1, ldots, n} }_{n=1}^infty$ of $mathbb{N}$ cannot be reduce to a finite subcover.
$endgroup$
– parsiad
4 hours ago
$begingroup$
@parsiad Ah okay , so I should think of each one of the points in A needing to be covered by an open set in T rather than the set itself being able to be fully covered by a single set. So then using that fact I could then use the rest of my argument to say that $Bbb N$ is not compact as given an open cover ${B_alpha}$ of $Bbb N$ then for each $nin Bbb N$ we can cover it with a set from T but we need infinitely many to do it for all points so it's not compact ?
$endgroup$
– can'tcauchy
4 hours ago
1
$begingroup$
I'm not sure what you mean, but you should use this definition of compactness. I've included an argument for why $mathbb{N}$ is not compact in my comment above that you can revisit after understanding the linked definition.
$endgroup$
– parsiad
4 hours ago
$begingroup$
@parsiad what you said in your comment is what I meant. Thanks ! But maybe the part I was unclear about was that I think I had been considering the set A={1,...n} as being able to be covered by the set {1,....n} in T, but as it says in the definition we have to think about A as being covered by points in a collection of open sets within A, and this can be reduced to a finite number of open sets which do this . Are the limit point and closure part of my argument is fine ,correct ?
$endgroup$
– can'tcauchy
4 hours ago
$begingroup$
Yes, I think that part of your argument is correct. I posted a detailed answer anyways.
$endgroup$
– parsiad
4 hours ago