Question about the proof of Second Isomorphism TheoremIsomorphism theorem and proving $f:Gto G'$ onto,...
Freedom of speech and where it applies
Aragorn's "guise" in the Orthanc Stone
Does an advisor owe his/her student anything? Will an advisor keep a PhD student only out of pity?
Creepy dinosaur pc game identification
Where does the bonus feat in the cleric starting package come from?
When a Cleric spontaneously casts a Cure Light Wounds spell, will a Pearl of Power recover the original spell or Cure Light Wounds?
Question about the proof of Second Isomorphism Theorem
Can I sign legal documents with a smiley face?
Are the IPv6 address space and IPv4 address space completely disjoint?
What are the purposes of autoencoders?
I am looking for the correct translation of love for the phrase "in this sign love"
Loading commands from file
Redundant comparison & "if" before assignment
Why should universal income be universal?
How can "mimic phobia" be cured or prevented?
Why did the EU agree to delay the Brexit deadline?
Biological Blimps: Propulsion
Count the occurrence of each unique word in the file
The screen of my macbook suddenly broken down how can I do to recover
Start making guitar arrangements
Calculating Wattage for Resistor in High Frequency Application?
Does the expansion of the universe explain why the universe doesn't collapse?
Closed-form expression for certain product
Where did Heinlein say "Once you get to Earth orbit, you're halfway to anywhere in the Solar System"?
Question about the proof of Second Isomorphism Theorem
Isomorphism theorem and proving $f:Gto G'$ onto, $K'triangleleft G'Rightarrow G/f^{-1}(K')cong G'/K'$Interpretation of Second isomorphism theoremQuestion about second Isomorphism TheoremNeed isomorphism theorem intuitionWhy $phi(H) cong H/ kerphi$ in the Second Isomorphism Theorem?Intuition behind the first isomorphism theoremIntuition about the first isomorphism theoremIntuition about the second isomorphism theoremFundamental Isomorphism TheoremFinding the kernel of $phi$ of applying the First Isomorphism Theorem
$begingroup$
The Second Isomorphism Theorem:
Let $H$ be a subgroup of a group $G$ and $N$ a normal subgroup of $G$. Then
$$H/(Hcap N)cong(HN)/N$$
There is the proof of Abstract Algebra Thomas by W. Judson:
Define a map $phi$ from $H$ to $HN/N$ by $Hmapsto hN$. The map $phi$ is onto, since any coset $hnN=hN$ is the image of $h$ in $H$. We also know that $phi$ is a homomorphism because
$$phi(hh')=hh'N=hNh'N=phi(h)phi(h')$$
By the First Isomorphism Theorem, the image of $phi$ is isomorphic to $H/kerphi$, that is
$$HN/N=phi(H)cong H/kerphi$$
Since
$$kerphi={hin H:hin N}=Hcap N$$
$HN/N=phi(H)cong H/Hcap N$
My question:
Is it necessary to prove that the map $phi$ is onto? Can we only prove that $phi$ is well defined and the image of $phi$ is a subset of $HN/N$? And then we can use the First Isomorphism Theorem and continue the proof.
Thank you.
abstract-algebra group-theory group-isomorphism group-homomorphism
New contributor
$endgroup$
add a comment |
$begingroup$
The Second Isomorphism Theorem:
Let $H$ be a subgroup of a group $G$ and $N$ a normal subgroup of $G$. Then
$$H/(Hcap N)cong(HN)/N$$
There is the proof of Abstract Algebra Thomas by W. Judson:
Define a map $phi$ from $H$ to $HN/N$ by $Hmapsto hN$. The map $phi$ is onto, since any coset $hnN=hN$ is the image of $h$ in $H$. We also know that $phi$ is a homomorphism because
$$phi(hh')=hh'N=hNh'N=phi(h)phi(h')$$
By the First Isomorphism Theorem, the image of $phi$ is isomorphic to $H/kerphi$, that is
$$HN/N=phi(H)cong H/kerphi$$
Since
$$kerphi={hin H:hin N}=Hcap N$$
$HN/N=phi(H)cong H/Hcap N$
My question:
Is it necessary to prove that the map $phi$ is onto? Can we only prove that $phi$ is well defined and the image of $phi$ is a subset of $HN/N$? And then we can use the First Isomorphism Theorem and continue the proof.
Thank you.
abstract-algebra group-theory group-isomorphism group-homomorphism
New contributor
$endgroup$
add a comment |
$begingroup$
The Second Isomorphism Theorem:
Let $H$ be a subgroup of a group $G$ and $N$ a normal subgroup of $G$. Then
$$H/(Hcap N)cong(HN)/N$$
There is the proof of Abstract Algebra Thomas by W. Judson:
Define a map $phi$ from $H$ to $HN/N$ by $Hmapsto hN$. The map $phi$ is onto, since any coset $hnN=hN$ is the image of $h$ in $H$. We also know that $phi$ is a homomorphism because
$$phi(hh')=hh'N=hNh'N=phi(h)phi(h')$$
By the First Isomorphism Theorem, the image of $phi$ is isomorphic to $H/kerphi$, that is
$$HN/N=phi(H)cong H/kerphi$$
Since
$$kerphi={hin H:hin N}=Hcap N$$
$HN/N=phi(H)cong H/Hcap N$
My question:
Is it necessary to prove that the map $phi$ is onto? Can we only prove that $phi$ is well defined and the image of $phi$ is a subset of $HN/N$? And then we can use the First Isomorphism Theorem and continue the proof.
Thank you.
abstract-algebra group-theory group-isomorphism group-homomorphism
New contributor
$endgroup$
The Second Isomorphism Theorem:
Let $H$ be a subgroup of a group $G$ and $N$ a normal subgroup of $G$. Then
$$H/(Hcap N)cong(HN)/N$$
There is the proof of Abstract Algebra Thomas by W. Judson:
Define a map $phi$ from $H$ to $HN/N$ by $Hmapsto hN$. The map $phi$ is onto, since any coset $hnN=hN$ is the image of $h$ in $H$. We also know that $phi$ is a homomorphism because
$$phi(hh')=hh'N=hNh'N=phi(h)phi(h')$$
By the First Isomorphism Theorem, the image of $phi$ is isomorphic to $H/kerphi$, that is
$$HN/N=phi(H)cong H/kerphi$$
Since
$$kerphi={hin H:hin N}=Hcap N$$
$HN/N=phi(H)cong H/Hcap N$
My question:
Is it necessary to prove that the map $phi$ is onto? Can we only prove that $phi$ is well defined and the image of $phi$ is a subset of $HN/N$? And then we can use the First Isomorphism Theorem and continue the proof.
Thank you.
abstract-algebra group-theory group-isomorphism group-homomorphism
abstract-algebra group-theory group-isomorphism group-homomorphism
New contributor
New contributor
edited 3 hours ago
Andrews
1,2761421
1,2761421
New contributor
asked 4 hours ago
NiaBieNiaBie
232
232
New contributor
New contributor
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The First Isomorphism Theorem states that if $varphi: G to G'$, then $mathrm{im}(varphi) cong G/mathrm{ker}(varphi)$. If we do not know that your $phi$ is surjective, then the First Isomorphism Theorem only shows us that $H/H cap N cong mathrm{im}(phi) subseteq HN/N$, which does not finish the job.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
NiaBie is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160013%2fquestion-about-the-proof-of-second-isomorphism-theorem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The First Isomorphism Theorem states that if $varphi: G to G'$, then $mathrm{im}(varphi) cong G/mathrm{ker}(varphi)$. If we do not know that your $phi$ is surjective, then the First Isomorphism Theorem only shows us that $H/H cap N cong mathrm{im}(phi) subseteq HN/N$, which does not finish the job.
$endgroup$
add a comment |
$begingroup$
The First Isomorphism Theorem states that if $varphi: G to G'$, then $mathrm{im}(varphi) cong G/mathrm{ker}(varphi)$. If we do not know that your $phi$ is surjective, then the First Isomorphism Theorem only shows us that $H/H cap N cong mathrm{im}(phi) subseteq HN/N$, which does not finish the job.
$endgroup$
add a comment |
$begingroup$
The First Isomorphism Theorem states that if $varphi: G to G'$, then $mathrm{im}(varphi) cong G/mathrm{ker}(varphi)$. If we do not know that your $phi$ is surjective, then the First Isomorphism Theorem only shows us that $H/H cap N cong mathrm{im}(phi) subseteq HN/N$, which does not finish the job.
$endgroup$
The First Isomorphism Theorem states that if $varphi: G to G'$, then $mathrm{im}(varphi) cong G/mathrm{ker}(varphi)$. If we do not know that your $phi$ is surjective, then the First Isomorphism Theorem only shows us that $H/H cap N cong mathrm{im}(phi) subseteq HN/N$, which does not finish the job.
answered 4 hours ago
Joshua MundingerJoshua Mundinger
2,7621028
2,7621028
add a comment |
add a comment |
NiaBie is a new contributor. Be nice, and check out our Code of Conduct.
NiaBie is a new contributor. Be nice, and check out our Code of Conduct.
NiaBie is a new contributor. Be nice, and check out our Code of Conduct.
NiaBie is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160013%2fquestion-about-the-proof-of-second-isomorphism-theorem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown