Integral Notations in Quantum MechanicsWhy is the $dx$ right next to the integral sign in QFT literature?Is...
Can I cause damage to electrical appliances by unplugging them when they are turned on?
How to make a list of partial sums using forEach
Is there a RAID 0 Equivalent for RAM?
How to get directions in deep space?
What is the meaning of the following sentence?
Why do Radio Buttons not fill the entire outer circle?
How do I Interface a PS/2 Keyboard without Modern Techniques?
How to make money from a browser who sees 5 seconds into the future of any web page?
Should I assume I have passed probation?
Pre-Employment Background Check With Consent For Future Checks
When is "ei" a diphthong?
Anime with legendary swords made from talismans and a man who could change them with a shattered body
The Digit Triangles
Usage of an old photo with expired copyright
Do people actually use the word "kaputt" in conversation?
Why is the principal energy of an electron lower for excited electrons in a higher energy state?
Did I make a mistake by ccing email to boss to others?
Quoting Keynes in a lecture
When and why was runway 07/25 at Kai Tak removed?
Why does the Persian emissary display a string of crowned skulls?
Integral Notations in Quantum Mechanics
Language involving irrational number is not a CFL
Why is participating in the European Parliamentary elections used as a threat?
How were servants to the Kaiser of Imperial Germany treated and where may I find more information on them
Integral Notations in Quantum Mechanics
Why is the $dx$ right next to the integral sign in QFT literature?Is there a recognised standard for typesetting quantum mechanical operators?What's the correct link between Dirac notation and wave mechanics integrals?Notation of integralsLine integral in cylindrical coordinates? Confused over notationWhat is the meaning of the double complex integral notation used in physics?flux-flux correlation function under Feynman's path integralBreaking up an Integral FurtherHow does spin enter into the path integral approach to quantum mechanics?Hermitian operator followed by another hermitian operator – is it also hermitian?Time evolution operator in QM
$begingroup$
I've been learning about Quantum Dynamics, time evolution operators, etc. I am confused about the notation used in integrals. Normally I am used to integrals written in this way (with $dx$ on the right side):
$$int f(x)dx$$
In this manner of notation, I can easily see the integrand as it is sandwiched by the integral sign and the $dx$.
However, I often see integrals written in this way (with $dx$ beside the integral sign):
$$int dx f(x)$$
Is this notation not ambiguous? This is especially confusing for me when used in products, as I cannot identify what is the integrand sometimes. For example, I don't understand which is true in the following (when evaluating time evolution operator): $$begin{align}left(int ^t_{t_0} dt' H(t')right)^2stackrel{?}{=}int ^t_{t_0} H(t') dt'int ^t_{t_0} H(t'')dt''\stackrel{?}{=}int ^t_{t_0} dt' H(t')int ^t_{t_0} dt'' H(t'')\stackrel{?}{=}int ^t_{t_0} dt'int ^t_{t_0} dt'' H(t') H(t'') end{align}$$
The last line is especially confusing for me as I'm not sure if the integrand changes. Could I please get clarification for these different notations? Is there a reason for such notation? (If I'm not wrong, it is to group the integrals and the integrands in separate places for convenience? I'm not sure if it sacrifices clarity for this though.)
EDIT: There is also an issue of when operators are involved:
$$begin{align}int dx hat{F}(x) hat{G}(x)stackrel{?}{=}int hat{F}(x)dxhat{G}(x)\stackrel{?}{=}int hat{F}(x)hat{G}(x)dxend{align}$$
How do you know which operator is in the integrand? And assuming the general case where $hat{F}$ and $hat{G}$ do not commute, you cannot write the integral with $hat{G}(x)$ on the left of the integral. How is this not ambiguous?
quantum-mechanics notation integration
$endgroup$
add a comment |
$begingroup$
I've been learning about Quantum Dynamics, time evolution operators, etc. I am confused about the notation used in integrals. Normally I am used to integrals written in this way (with $dx$ on the right side):
$$int f(x)dx$$
In this manner of notation, I can easily see the integrand as it is sandwiched by the integral sign and the $dx$.
However, I often see integrals written in this way (with $dx$ beside the integral sign):
$$int dx f(x)$$
Is this notation not ambiguous? This is especially confusing for me when used in products, as I cannot identify what is the integrand sometimes. For example, I don't understand which is true in the following (when evaluating time evolution operator): $$begin{align}left(int ^t_{t_0} dt' H(t')right)^2stackrel{?}{=}int ^t_{t_0} H(t') dt'int ^t_{t_0} H(t'')dt''\stackrel{?}{=}int ^t_{t_0} dt' H(t')int ^t_{t_0} dt'' H(t'')\stackrel{?}{=}int ^t_{t_0} dt'int ^t_{t_0} dt'' H(t') H(t'') end{align}$$
The last line is especially confusing for me as I'm not sure if the integrand changes. Could I please get clarification for these different notations? Is there a reason for such notation? (If I'm not wrong, it is to group the integrals and the integrands in separate places for convenience? I'm not sure if it sacrifices clarity for this though.)
EDIT: There is also an issue of when operators are involved:
$$begin{align}int dx hat{F}(x) hat{G}(x)stackrel{?}{=}int hat{F}(x)dxhat{G}(x)\stackrel{?}{=}int hat{F}(x)hat{G}(x)dxend{align}$$
How do you know which operator is in the integrand? And assuming the general case where $hat{F}$ and $hat{G}$ do not commute, you cannot write the integral with $hat{G}(x)$ on the left of the integral. How is this not ambiguous?
quantum-mechanics notation integration
$endgroup$
$begingroup$
Related: physics.stackexchange.com/q/200378/2451, math.stackexchange.com/q/387572/11127
$endgroup$
– Qmechanic♦
1 hour ago
add a comment |
$begingroup$
I've been learning about Quantum Dynamics, time evolution operators, etc. I am confused about the notation used in integrals. Normally I am used to integrals written in this way (with $dx$ on the right side):
$$int f(x)dx$$
In this manner of notation, I can easily see the integrand as it is sandwiched by the integral sign and the $dx$.
However, I often see integrals written in this way (with $dx$ beside the integral sign):
$$int dx f(x)$$
Is this notation not ambiguous? This is especially confusing for me when used in products, as I cannot identify what is the integrand sometimes. For example, I don't understand which is true in the following (when evaluating time evolution operator): $$begin{align}left(int ^t_{t_0} dt' H(t')right)^2stackrel{?}{=}int ^t_{t_0} H(t') dt'int ^t_{t_0} H(t'')dt''\stackrel{?}{=}int ^t_{t_0} dt' H(t')int ^t_{t_0} dt'' H(t'')\stackrel{?}{=}int ^t_{t_0} dt'int ^t_{t_0} dt'' H(t') H(t'') end{align}$$
The last line is especially confusing for me as I'm not sure if the integrand changes. Could I please get clarification for these different notations? Is there a reason for such notation? (If I'm not wrong, it is to group the integrals and the integrands in separate places for convenience? I'm not sure if it sacrifices clarity for this though.)
EDIT: There is also an issue of when operators are involved:
$$begin{align}int dx hat{F}(x) hat{G}(x)stackrel{?}{=}int hat{F}(x)dxhat{G}(x)\stackrel{?}{=}int hat{F}(x)hat{G}(x)dxend{align}$$
How do you know which operator is in the integrand? And assuming the general case where $hat{F}$ and $hat{G}$ do not commute, you cannot write the integral with $hat{G}(x)$ on the left of the integral. How is this not ambiguous?
quantum-mechanics notation integration
$endgroup$
I've been learning about Quantum Dynamics, time evolution operators, etc. I am confused about the notation used in integrals. Normally I am used to integrals written in this way (with $dx$ on the right side):
$$int f(x)dx$$
In this manner of notation, I can easily see the integrand as it is sandwiched by the integral sign and the $dx$.
However, I often see integrals written in this way (with $dx$ beside the integral sign):
$$int dx f(x)$$
Is this notation not ambiguous? This is especially confusing for me when used in products, as I cannot identify what is the integrand sometimes. For example, I don't understand which is true in the following (when evaluating time evolution operator): $$begin{align}left(int ^t_{t_0} dt' H(t')right)^2stackrel{?}{=}int ^t_{t_0} H(t') dt'int ^t_{t_0} H(t'')dt''\stackrel{?}{=}int ^t_{t_0} dt' H(t')int ^t_{t_0} dt'' H(t'')\stackrel{?}{=}int ^t_{t_0} dt'int ^t_{t_0} dt'' H(t') H(t'') end{align}$$
The last line is especially confusing for me as I'm not sure if the integrand changes. Could I please get clarification for these different notations? Is there a reason for such notation? (If I'm not wrong, it is to group the integrals and the integrands in separate places for convenience? I'm not sure if it sacrifices clarity for this though.)
EDIT: There is also an issue of when operators are involved:
$$begin{align}int dx hat{F}(x) hat{G}(x)stackrel{?}{=}int hat{F}(x)dxhat{G}(x)\stackrel{?}{=}int hat{F}(x)hat{G}(x)dxend{align}$$
How do you know which operator is in the integrand? And assuming the general case where $hat{F}$ and $hat{G}$ do not commute, you cannot write the integral with $hat{G}(x)$ on the left of the integral. How is this not ambiguous?
quantum-mechanics notation integration
quantum-mechanics notation integration
edited 1 hour ago
Hexiang Chang
asked 1 hour ago
Hexiang ChangHexiang Chang
100211
100211
$begingroup$
Related: physics.stackexchange.com/q/200378/2451, math.stackexchange.com/q/387572/11127
$endgroup$
– Qmechanic♦
1 hour ago
add a comment |
$begingroup$
Related: physics.stackexchange.com/q/200378/2451, math.stackexchange.com/q/387572/11127
$endgroup$
– Qmechanic♦
1 hour ago
$begingroup$
Related: physics.stackexchange.com/q/200378/2451, math.stackexchange.com/q/387572/11127
$endgroup$
– Qmechanic♦
1 hour ago
$begingroup$
Related: physics.stackexchange.com/q/200378/2451, math.stackexchange.com/q/387572/11127
$endgroup$
– Qmechanic♦
1 hour ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
I started seeing $$int dx f(x)$$ in my freshman year of undergraduate.
It's pretty common and the more you learn about integration the more it makes sense.
Now, regarding this part:
$$begin{align}left(int ^t_{t_0} dt' H(t')right)^2stackrel{?}{=}int ^t_{t_0} H(t') dt'int ^t_{t_0} H(t'')dt''\stackrel{?}{=}int ^t_{t_0} dt' H(t')int ^t_{t_0} dt'' H(t'')\stackrel{?}{=}int ^t_{t_0} dt'int ^t_{t_0} dt'' H(t') H(t'') end{align}$$
All of the equals signs there are correct.
Integrals factor like this:
$$
int dx int dy , f(x) , g(y) =
left( int dx , f(x) right) left( int dy ,g(y) right) , ,
$$
which is all you did there.
In fact, these are all the same:
begin{align}
int int dx , dy , f(x) g(y)
&= int dx int dy , f(x) g(y) \
&= int dx , dy , f(x) g(y) \
&= left( int dx , f(x) right) left( int dy , g(y) right) \
&= left( int dx , f(x) right) left( int dx , g(x) right) \
end{align}
Note, however, that you cannot factor something like this:
$$
int_0^t f(t') left( int_0^{t'} dt'' f(t'') right) dt'
$$
because the limit of the second integral depends on the first integral's integration variable.
You can, however, write it as
$$
int_0^t dt' f(t') int_0^{t'} dt'' f(t'') , .
$$
Operators
There is also an issue of when operators are involved:
$$begin{align}int dx hat{F}(x) hat{G}(x)stackrel{?}{=}int hat{F}(x)dxhat{G}(x)\stackrel{?}{=}int hat{F}(x)hat{G}(x)dxend{align}$$
There's really no difference.
The key is to remember that the $dx$ really doesn't mean anything other than to remind you which variable(s) in the integrand is being integrated.
By convention we tend to write the $dx$ either at the front or at the end.
I've never seen it written in the middle like that.
I think everyone would know what you mean, but putting the $dx$ is the middle of the integrands runs the risk that a reader won't notice them.
How do you know which operator is in the integrand?
Ok that's a good question!
It really comes down to the fact that notation has to be clear.
If you use the symbol $x$ to denote both an integration variable and a not-integrated variable, that's just asking for trouble.
It also shouldn't ever happen because integration variables are consumed by the integral, so they can't be referred to anywhere else in an equation.
For example, this makes no sense:
$$ g(x) = int_0^1 sin(x) dx$$
because there's no "free" $x$ on the right hand side.
And assuming the general case where $hat{F}$ and $hat{G}$ do not commute, you cannot write the integral with $hat{G}(x)$ on the left of the integral. How is this not ambiguous?
Well, you certainly would not write
$$ int dx hat F(x) hat G(x) neq left( int dx hat F(x) right) hat G(x) , .$$
That just makes no sense.
$endgroup$
$begingroup$
Thank you for a great answer! Could you please address my edit as well?
$endgroup$
– Hexiang Chang
1 hour ago
$begingroup$
I'm so sorry, I forgot that I needed to ask that as well
$endgroup$
– Hexiang Chang
1 hour ago
add a comment |
$begingroup$
The notation is not ambiguous; it's purely convention. The correspondence is
$$
left(
int_{t_1}^{t_2} H(t) dt right) left( int_{t'_1}^{t'_2}H(t',t)dt' right)
iff int_{t_1}^{t_2}int_{t'_1}^{t'_2}H(t)H(t',t)dt' dt.
$$
That is instead of evaluating "inside out" we evaluate the integrals from right to left.
If you square an integral as
$$ left(int ^t_{t_0} dt' H(t')right)^2 $$
you should know that in general these two integrals don't talk to one another, except in very special cases. That is, they are completely separate entities.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "151"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f467758%2fintegral-notations-in-quantum-mechanics%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I started seeing $$int dx f(x)$$ in my freshman year of undergraduate.
It's pretty common and the more you learn about integration the more it makes sense.
Now, regarding this part:
$$begin{align}left(int ^t_{t_0} dt' H(t')right)^2stackrel{?}{=}int ^t_{t_0} H(t') dt'int ^t_{t_0} H(t'')dt''\stackrel{?}{=}int ^t_{t_0} dt' H(t')int ^t_{t_0} dt'' H(t'')\stackrel{?}{=}int ^t_{t_0} dt'int ^t_{t_0} dt'' H(t') H(t'') end{align}$$
All of the equals signs there are correct.
Integrals factor like this:
$$
int dx int dy , f(x) , g(y) =
left( int dx , f(x) right) left( int dy ,g(y) right) , ,
$$
which is all you did there.
In fact, these are all the same:
begin{align}
int int dx , dy , f(x) g(y)
&= int dx int dy , f(x) g(y) \
&= int dx , dy , f(x) g(y) \
&= left( int dx , f(x) right) left( int dy , g(y) right) \
&= left( int dx , f(x) right) left( int dx , g(x) right) \
end{align}
Note, however, that you cannot factor something like this:
$$
int_0^t f(t') left( int_0^{t'} dt'' f(t'') right) dt'
$$
because the limit of the second integral depends on the first integral's integration variable.
You can, however, write it as
$$
int_0^t dt' f(t') int_0^{t'} dt'' f(t'') , .
$$
Operators
There is also an issue of when operators are involved:
$$begin{align}int dx hat{F}(x) hat{G}(x)stackrel{?}{=}int hat{F}(x)dxhat{G}(x)\stackrel{?}{=}int hat{F}(x)hat{G}(x)dxend{align}$$
There's really no difference.
The key is to remember that the $dx$ really doesn't mean anything other than to remind you which variable(s) in the integrand is being integrated.
By convention we tend to write the $dx$ either at the front or at the end.
I've never seen it written in the middle like that.
I think everyone would know what you mean, but putting the $dx$ is the middle of the integrands runs the risk that a reader won't notice them.
How do you know which operator is in the integrand?
Ok that's a good question!
It really comes down to the fact that notation has to be clear.
If you use the symbol $x$ to denote both an integration variable and a not-integrated variable, that's just asking for trouble.
It also shouldn't ever happen because integration variables are consumed by the integral, so they can't be referred to anywhere else in an equation.
For example, this makes no sense:
$$ g(x) = int_0^1 sin(x) dx$$
because there's no "free" $x$ on the right hand side.
And assuming the general case where $hat{F}$ and $hat{G}$ do not commute, you cannot write the integral with $hat{G}(x)$ on the left of the integral. How is this not ambiguous?
Well, you certainly would not write
$$ int dx hat F(x) hat G(x) neq left( int dx hat F(x) right) hat G(x) , .$$
That just makes no sense.
$endgroup$
$begingroup$
Thank you for a great answer! Could you please address my edit as well?
$endgroup$
– Hexiang Chang
1 hour ago
$begingroup$
I'm so sorry, I forgot that I needed to ask that as well
$endgroup$
– Hexiang Chang
1 hour ago
add a comment |
$begingroup$
I started seeing $$int dx f(x)$$ in my freshman year of undergraduate.
It's pretty common and the more you learn about integration the more it makes sense.
Now, regarding this part:
$$begin{align}left(int ^t_{t_0} dt' H(t')right)^2stackrel{?}{=}int ^t_{t_0} H(t') dt'int ^t_{t_0} H(t'')dt''\stackrel{?}{=}int ^t_{t_0} dt' H(t')int ^t_{t_0} dt'' H(t'')\stackrel{?}{=}int ^t_{t_0} dt'int ^t_{t_0} dt'' H(t') H(t'') end{align}$$
All of the equals signs there are correct.
Integrals factor like this:
$$
int dx int dy , f(x) , g(y) =
left( int dx , f(x) right) left( int dy ,g(y) right) , ,
$$
which is all you did there.
In fact, these are all the same:
begin{align}
int int dx , dy , f(x) g(y)
&= int dx int dy , f(x) g(y) \
&= int dx , dy , f(x) g(y) \
&= left( int dx , f(x) right) left( int dy , g(y) right) \
&= left( int dx , f(x) right) left( int dx , g(x) right) \
end{align}
Note, however, that you cannot factor something like this:
$$
int_0^t f(t') left( int_0^{t'} dt'' f(t'') right) dt'
$$
because the limit of the second integral depends on the first integral's integration variable.
You can, however, write it as
$$
int_0^t dt' f(t') int_0^{t'} dt'' f(t'') , .
$$
Operators
There is also an issue of when operators are involved:
$$begin{align}int dx hat{F}(x) hat{G}(x)stackrel{?}{=}int hat{F}(x)dxhat{G}(x)\stackrel{?}{=}int hat{F}(x)hat{G}(x)dxend{align}$$
There's really no difference.
The key is to remember that the $dx$ really doesn't mean anything other than to remind you which variable(s) in the integrand is being integrated.
By convention we tend to write the $dx$ either at the front or at the end.
I've never seen it written in the middle like that.
I think everyone would know what you mean, but putting the $dx$ is the middle of the integrands runs the risk that a reader won't notice them.
How do you know which operator is in the integrand?
Ok that's a good question!
It really comes down to the fact that notation has to be clear.
If you use the symbol $x$ to denote both an integration variable and a not-integrated variable, that's just asking for trouble.
It also shouldn't ever happen because integration variables are consumed by the integral, so they can't be referred to anywhere else in an equation.
For example, this makes no sense:
$$ g(x) = int_0^1 sin(x) dx$$
because there's no "free" $x$ on the right hand side.
And assuming the general case where $hat{F}$ and $hat{G}$ do not commute, you cannot write the integral with $hat{G}(x)$ on the left of the integral. How is this not ambiguous?
Well, you certainly would not write
$$ int dx hat F(x) hat G(x) neq left( int dx hat F(x) right) hat G(x) , .$$
That just makes no sense.
$endgroup$
$begingroup$
Thank you for a great answer! Could you please address my edit as well?
$endgroup$
– Hexiang Chang
1 hour ago
$begingroup$
I'm so sorry, I forgot that I needed to ask that as well
$endgroup$
– Hexiang Chang
1 hour ago
add a comment |
$begingroup$
I started seeing $$int dx f(x)$$ in my freshman year of undergraduate.
It's pretty common and the more you learn about integration the more it makes sense.
Now, regarding this part:
$$begin{align}left(int ^t_{t_0} dt' H(t')right)^2stackrel{?}{=}int ^t_{t_0} H(t') dt'int ^t_{t_0} H(t'')dt''\stackrel{?}{=}int ^t_{t_0} dt' H(t')int ^t_{t_0} dt'' H(t'')\stackrel{?}{=}int ^t_{t_0} dt'int ^t_{t_0} dt'' H(t') H(t'') end{align}$$
All of the equals signs there are correct.
Integrals factor like this:
$$
int dx int dy , f(x) , g(y) =
left( int dx , f(x) right) left( int dy ,g(y) right) , ,
$$
which is all you did there.
In fact, these are all the same:
begin{align}
int int dx , dy , f(x) g(y)
&= int dx int dy , f(x) g(y) \
&= int dx , dy , f(x) g(y) \
&= left( int dx , f(x) right) left( int dy , g(y) right) \
&= left( int dx , f(x) right) left( int dx , g(x) right) \
end{align}
Note, however, that you cannot factor something like this:
$$
int_0^t f(t') left( int_0^{t'} dt'' f(t'') right) dt'
$$
because the limit of the second integral depends on the first integral's integration variable.
You can, however, write it as
$$
int_0^t dt' f(t') int_0^{t'} dt'' f(t'') , .
$$
Operators
There is also an issue of when operators are involved:
$$begin{align}int dx hat{F}(x) hat{G}(x)stackrel{?}{=}int hat{F}(x)dxhat{G}(x)\stackrel{?}{=}int hat{F}(x)hat{G}(x)dxend{align}$$
There's really no difference.
The key is to remember that the $dx$ really doesn't mean anything other than to remind you which variable(s) in the integrand is being integrated.
By convention we tend to write the $dx$ either at the front or at the end.
I've never seen it written in the middle like that.
I think everyone would know what you mean, but putting the $dx$ is the middle of the integrands runs the risk that a reader won't notice them.
How do you know which operator is in the integrand?
Ok that's a good question!
It really comes down to the fact that notation has to be clear.
If you use the symbol $x$ to denote both an integration variable and a not-integrated variable, that's just asking for trouble.
It also shouldn't ever happen because integration variables are consumed by the integral, so they can't be referred to anywhere else in an equation.
For example, this makes no sense:
$$ g(x) = int_0^1 sin(x) dx$$
because there's no "free" $x$ on the right hand side.
And assuming the general case where $hat{F}$ and $hat{G}$ do not commute, you cannot write the integral with $hat{G}(x)$ on the left of the integral. How is this not ambiguous?
Well, you certainly would not write
$$ int dx hat F(x) hat G(x) neq left( int dx hat F(x) right) hat G(x) , .$$
That just makes no sense.
$endgroup$
I started seeing $$int dx f(x)$$ in my freshman year of undergraduate.
It's pretty common and the more you learn about integration the more it makes sense.
Now, regarding this part:
$$begin{align}left(int ^t_{t_0} dt' H(t')right)^2stackrel{?}{=}int ^t_{t_0} H(t') dt'int ^t_{t_0} H(t'')dt''\stackrel{?}{=}int ^t_{t_0} dt' H(t')int ^t_{t_0} dt'' H(t'')\stackrel{?}{=}int ^t_{t_0} dt'int ^t_{t_0} dt'' H(t') H(t'') end{align}$$
All of the equals signs there are correct.
Integrals factor like this:
$$
int dx int dy , f(x) , g(y) =
left( int dx , f(x) right) left( int dy ,g(y) right) , ,
$$
which is all you did there.
In fact, these are all the same:
begin{align}
int int dx , dy , f(x) g(y)
&= int dx int dy , f(x) g(y) \
&= int dx , dy , f(x) g(y) \
&= left( int dx , f(x) right) left( int dy , g(y) right) \
&= left( int dx , f(x) right) left( int dx , g(x) right) \
end{align}
Note, however, that you cannot factor something like this:
$$
int_0^t f(t') left( int_0^{t'} dt'' f(t'') right) dt'
$$
because the limit of the second integral depends on the first integral's integration variable.
You can, however, write it as
$$
int_0^t dt' f(t') int_0^{t'} dt'' f(t'') , .
$$
Operators
There is also an issue of when operators are involved:
$$begin{align}int dx hat{F}(x) hat{G}(x)stackrel{?}{=}int hat{F}(x)dxhat{G}(x)\stackrel{?}{=}int hat{F}(x)hat{G}(x)dxend{align}$$
There's really no difference.
The key is to remember that the $dx$ really doesn't mean anything other than to remind you which variable(s) in the integrand is being integrated.
By convention we tend to write the $dx$ either at the front or at the end.
I've never seen it written in the middle like that.
I think everyone would know what you mean, but putting the $dx$ is the middle of the integrands runs the risk that a reader won't notice them.
How do you know which operator is in the integrand?
Ok that's a good question!
It really comes down to the fact that notation has to be clear.
If you use the symbol $x$ to denote both an integration variable and a not-integrated variable, that's just asking for trouble.
It also shouldn't ever happen because integration variables are consumed by the integral, so they can't be referred to anywhere else in an equation.
For example, this makes no sense:
$$ g(x) = int_0^1 sin(x) dx$$
because there's no "free" $x$ on the right hand side.
And assuming the general case where $hat{F}$ and $hat{G}$ do not commute, you cannot write the integral with $hat{G}(x)$ on the left of the integral. How is this not ambiguous?
Well, you certainly would not write
$$ int dx hat F(x) hat G(x) neq left( int dx hat F(x) right) hat G(x) , .$$
That just makes no sense.
edited 1 hour ago
answered 1 hour ago
DanielSankDanielSank
17.6k45178
17.6k45178
$begingroup$
Thank you for a great answer! Could you please address my edit as well?
$endgroup$
– Hexiang Chang
1 hour ago
$begingroup$
I'm so sorry, I forgot that I needed to ask that as well
$endgroup$
– Hexiang Chang
1 hour ago
add a comment |
$begingroup$
Thank you for a great answer! Could you please address my edit as well?
$endgroup$
– Hexiang Chang
1 hour ago
$begingroup$
I'm so sorry, I forgot that I needed to ask that as well
$endgroup$
– Hexiang Chang
1 hour ago
$begingroup$
Thank you for a great answer! Could you please address my edit as well?
$endgroup$
– Hexiang Chang
1 hour ago
$begingroup$
Thank you for a great answer! Could you please address my edit as well?
$endgroup$
– Hexiang Chang
1 hour ago
$begingroup$
I'm so sorry, I forgot that I needed to ask that as well
$endgroup$
– Hexiang Chang
1 hour ago
$begingroup$
I'm so sorry, I forgot that I needed to ask that as well
$endgroup$
– Hexiang Chang
1 hour ago
add a comment |
$begingroup$
The notation is not ambiguous; it's purely convention. The correspondence is
$$
left(
int_{t_1}^{t_2} H(t) dt right) left( int_{t'_1}^{t'_2}H(t',t)dt' right)
iff int_{t_1}^{t_2}int_{t'_1}^{t'_2}H(t)H(t',t)dt' dt.
$$
That is instead of evaluating "inside out" we evaluate the integrals from right to left.
If you square an integral as
$$ left(int ^t_{t_0} dt' H(t')right)^2 $$
you should know that in general these two integrals don't talk to one another, except in very special cases. That is, they are completely separate entities.
$endgroup$
add a comment |
$begingroup$
The notation is not ambiguous; it's purely convention. The correspondence is
$$
left(
int_{t_1}^{t_2} H(t) dt right) left( int_{t'_1}^{t'_2}H(t',t)dt' right)
iff int_{t_1}^{t_2}int_{t'_1}^{t'_2}H(t)H(t',t)dt' dt.
$$
That is instead of evaluating "inside out" we evaluate the integrals from right to left.
If you square an integral as
$$ left(int ^t_{t_0} dt' H(t')right)^2 $$
you should know that in general these two integrals don't talk to one another, except in very special cases. That is, they are completely separate entities.
$endgroup$
add a comment |
$begingroup$
The notation is not ambiguous; it's purely convention. The correspondence is
$$
left(
int_{t_1}^{t_2} H(t) dt right) left( int_{t'_1}^{t'_2}H(t',t)dt' right)
iff int_{t_1}^{t_2}int_{t'_1}^{t'_2}H(t)H(t',t)dt' dt.
$$
That is instead of evaluating "inside out" we evaluate the integrals from right to left.
If you square an integral as
$$ left(int ^t_{t_0} dt' H(t')right)^2 $$
you should know that in general these two integrals don't talk to one another, except in very special cases. That is, they are completely separate entities.
$endgroup$
The notation is not ambiguous; it's purely convention. The correspondence is
$$
left(
int_{t_1}^{t_2} H(t) dt right) left( int_{t'_1}^{t'_2}H(t',t)dt' right)
iff int_{t_1}^{t_2}int_{t'_1}^{t'_2}H(t)H(t',t)dt' dt.
$$
That is instead of evaluating "inside out" we evaluate the integrals from right to left.
If you square an integral as
$$ left(int ^t_{t_0} dt' H(t')right)^2 $$
you should know that in general these two integrals don't talk to one another, except in very special cases. That is, they are completely separate entities.
edited 1 hour ago
answered 1 hour ago
InertialObserverInertialObserver
3,2181027
3,2181027
add a comment |
add a comment |
Thanks for contributing an answer to Physics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f467758%2fintegral-notations-in-quantum-mechanics%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Related: physics.stackexchange.com/q/200378/2451, math.stackexchange.com/q/387572/11127
$endgroup$
– Qmechanic♦
1 hour ago