Graphic representation of a triangle using ArrayPlotOverlapping ArrayPlotColor inversion using...
Having the player face themselves after the mid-game
Is it possible to clone a polymorphic object without manually adding overridden clone method into each derived class in C++?
Giving a career talk in my old university, how prominently should I tell students my salary?
Is there stress on two letters on the word стоят
How can a demon take control of a human body during REM sleep?
How can I portion out frozen cookie dough?
What happened to the colonial estates belonging to loyalists after the American Revolution?
How do you make a gun that shoots melee weapons and/or swords?
Graphic representation of a triangle using ArrayPlot
Difference between `nmap local-IP-address` and `nmap localhost`
Are small insurances worth it?
Has a sovereign Communist government ever run, and conceded loss, on a fair election?
ESPP--any reason not to go all in?
Are all players supposed to be able to see each others' character sheets?
Can the Witch Sight warlock invocation see through the Mirror Image spell?
Is "cogitate" used appropriately in "I cogitate that success relies on hard work"?
School performs periodic password audits. Is my password compromised?
What is Tony Stark injecting into himself in Iron Man 3?
-1 to the power of a irrational number
Finding the minimum value of a function without using Calculus
Is this Paypal Github SDK reference really a dangerous site?
Would those living in a "perfect society" not understand satire
What does the Digital Threat scope actually do?
What is better: yes / no radio, or simple checkbox?
Graphic representation of a triangle using ArrayPlot
Overlapping ArrayPlotColor inversion using ArrayPlotPlotting Tupper's self-referential formula using ArrayPlotConstructing matrices from quantum states expressed in the bra-ket notationArrayPlot with logarithmic legendIntegral approximation using a matrix operatorNearest non-collinear/non-coplanar pointsHow to boost the performance of a function that approximates a 3D objectSpeeding up filling a matrix when approximating a double integralHow to achieve faster performance on plotting complex valued functions
$begingroup$
So I need to write a function which takes natural integer $n$ and returns graphical representation of a matrix $n times n$ using ArrayPlot[]
.
This matrix has to be pixel approximation of equilateral triangle which get better and better as $n$ increases.
I figured out a set of equilateral triangle points which is $$P={(x,y) in mathbb{R}^2:y<sqrt{3}x+frac{asqrt{3}}{2},y<-sqrt{3}x+frac{asqrt{3}}{2},y>0}$$
where $a$ is side length of this triangle.
f1[x_, a_] := -Sqrt[3]*x + (a*Sqrt[3])/2
f2[x_, a_] := Sqrt[3]*x + (a*Sqrt[3])/2
matrix[n_] := ConstantArray[0, {n, n}]
(...)
drawapprox[n_] := ArrayPlot[matrix[n], Mesh -> True]
So I make zero $n times n$ matrix and I want to put $1$ if a point belongs to $P$ but I don't know how to put together points from the plane to this 0-1 matrix to make it works. After that I just want to use ArrayPlot[]
function to draw new 0-1 matrix which represents triangle.
How do I make up the missing (...) part?
plotting matrix approximation
New contributor
$endgroup$
add a comment |
$begingroup$
So I need to write a function which takes natural integer $n$ and returns graphical representation of a matrix $n times n$ using ArrayPlot[]
.
This matrix has to be pixel approximation of equilateral triangle which get better and better as $n$ increases.
I figured out a set of equilateral triangle points which is $$P={(x,y) in mathbb{R}^2:y<sqrt{3}x+frac{asqrt{3}}{2},y<-sqrt{3}x+frac{asqrt{3}}{2},y>0}$$
where $a$ is side length of this triangle.
f1[x_, a_] := -Sqrt[3]*x + (a*Sqrt[3])/2
f2[x_, a_] := Sqrt[3]*x + (a*Sqrt[3])/2
matrix[n_] := ConstantArray[0, {n, n}]
(...)
drawapprox[n_] := ArrayPlot[matrix[n], Mesh -> True]
So I make zero $n times n$ matrix and I want to put $1$ if a point belongs to $P$ but I don't know how to put together points from the plane to this 0-1 matrix to make it works. After that I just want to use ArrayPlot[]
function to draw new 0-1 matrix which represents triangle.
How do I make up the missing (...) part?
plotting matrix approximation
New contributor
$endgroup$
add a comment |
$begingroup$
So I need to write a function which takes natural integer $n$ and returns graphical representation of a matrix $n times n$ using ArrayPlot[]
.
This matrix has to be pixel approximation of equilateral triangle which get better and better as $n$ increases.
I figured out a set of equilateral triangle points which is $$P={(x,y) in mathbb{R}^2:y<sqrt{3}x+frac{asqrt{3}}{2},y<-sqrt{3}x+frac{asqrt{3}}{2},y>0}$$
where $a$ is side length of this triangle.
f1[x_, a_] := -Sqrt[3]*x + (a*Sqrt[3])/2
f2[x_, a_] := Sqrt[3]*x + (a*Sqrt[3])/2
matrix[n_] := ConstantArray[0, {n, n}]
(...)
drawapprox[n_] := ArrayPlot[matrix[n], Mesh -> True]
So I make zero $n times n$ matrix and I want to put $1$ if a point belongs to $P$ but I don't know how to put together points from the plane to this 0-1 matrix to make it works. After that I just want to use ArrayPlot[]
function to draw new 0-1 matrix which represents triangle.
How do I make up the missing (...) part?
plotting matrix approximation
New contributor
$endgroup$
So I need to write a function which takes natural integer $n$ and returns graphical representation of a matrix $n times n$ using ArrayPlot[]
.
This matrix has to be pixel approximation of equilateral triangle which get better and better as $n$ increases.
I figured out a set of equilateral triangle points which is $$P={(x,y) in mathbb{R}^2:y<sqrt{3}x+frac{asqrt{3}}{2},y<-sqrt{3}x+frac{asqrt{3}}{2},y>0}$$
where $a$ is side length of this triangle.
f1[x_, a_] := -Sqrt[3]*x + (a*Sqrt[3])/2
f2[x_, a_] := Sqrt[3]*x + (a*Sqrt[3])/2
matrix[n_] := ConstantArray[0, {n, n}]
(...)
drawapprox[n_] := ArrayPlot[matrix[n], Mesh -> True]
So I make zero $n times n$ matrix and I want to put $1$ if a point belongs to $P$ but I don't know how to put together points from the plane to this 0-1 matrix to make it works. After that I just want to use ArrayPlot[]
function to draw new 0-1 matrix which represents triangle.
How do I make up the missing (...) part?
plotting matrix approximation
plotting matrix approximation
New contributor
New contributor
New contributor
asked 4 hours ago
apoxeiroapoxeiro
132
132
New contributor
New contributor
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Update: An alternative method using SparseArray
:
ClearAll[sa, plot2]
sa[a_] := SparseArray[{i_, j_} /;
a - i < f1[j - (a + Boole[OddQ[a]])/2, a] &&
a - i < f2[j - (a + Boole[OddQ[a]])/2, a] -> 1, {a, a}]
plot2[a_] := ArrayPlot[sa[a], Mesh -> All]
Row[plot2 /@ Range[3, 21, 2]]
Original answer:
aplot[a_] := ArrayPlot[Boole @ MapIndexed[
a - #2[[1]] < f1[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &&
a - #2[[1]] < f2[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &,
matrix[a], {2}], Mesh -> All];
Row[Show[plot@#, Graphics[{FaceForm[], EdgeForm[{Thick, Red}], SSSTriangle[#, #, #]}]] & /@
Range[3, 21, 2]]
With a = 101;
and Mesh -> None
, we get
a = 1001;
ap1001 = ArrayPlot[Boole@MapIndexed[
a - #2[[1]] < f1[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &&
a - #2[[1]] < f2[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &,
matrix[a], {2}], Mesh -> None];
Graphics[{ap1001[[1]], FaceForm[], EdgeForm[{Thick, Red}],
SSSTriangle[1001, 1001, 1001]}]
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
apoxeiro is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f192959%2fgraphic-representation-of-a-triangle-using-arrayplot%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Update: An alternative method using SparseArray
:
ClearAll[sa, plot2]
sa[a_] := SparseArray[{i_, j_} /;
a - i < f1[j - (a + Boole[OddQ[a]])/2, a] &&
a - i < f2[j - (a + Boole[OddQ[a]])/2, a] -> 1, {a, a}]
plot2[a_] := ArrayPlot[sa[a], Mesh -> All]
Row[plot2 /@ Range[3, 21, 2]]
Original answer:
aplot[a_] := ArrayPlot[Boole @ MapIndexed[
a - #2[[1]] < f1[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &&
a - #2[[1]] < f2[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &,
matrix[a], {2}], Mesh -> All];
Row[Show[plot@#, Graphics[{FaceForm[], EdgeForm[{Thick, Red}], SSSTriangle[#, #, #]}]] & /@
Range[3, 21, 2]]
With a = 101;
and Mesh -> None
, we get
a = 1001;
ap1001 = ArrayPlot[Boole@MapIndexed[
a - #2[[1]] < f1[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &&
a - #2[[1]] < f2[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &,
matrix[a], {2}], Mesh -> None];
Graphics[{ap1001[[1]], FaceForm[], EdgeForm[{Thick, Red}],
SSSTriangle[1001, 1001, 1001]}]
$endgroup$
add a comment |
$begingroup$
Update: An alternative method using SparseArray
:
ClearAll[sa, plot2]
sa[a_] := SparseArray[{i_, j_} /;
a - i < f1[j - (a + Boole[OddQ[a]])/2, a] &&
a - i < f2[j - (a + Boole[OddQ[a]])/2, a] -> 1, {a, a}]
plot2[a_] := ArrayPlot[sa[a], Mesh -> All]
Row[plot2 /@ Range[3, 21, 2]]
Original answer:
aplot[a_] := ArrayPlot[Boole @ MapIndexed[
a - #2[[1]] < f1[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &&
a - #2[[1]] < f2[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &,
matrix[a], {2}], Mesh -> All];
Row[Show[plot@#, Graphics[{FaceForm[], EdgeForm[{Thick, Red}], SSSTriangle[#, #, #]}]] & /@
Range[3, 21, 2]]
With a = 101;
and Mesh -> None
, we get
a = 1001;
ap1001 = ArrayPlot[Boole@MapIndexed[
a - #2[[1]] < f1[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &&
a - #2[[1]] < f2[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &,
matrix[a], {2}], Mesh -> None];
Graphics[{ap1001[[1]], FaceForm[], EdgeForm[{Thick, Red}],
SSSTriangle[1001, 1001, 1001]}]
$endgroup$
add a comment |
$begingroup$
Update: An alternative method using SparseArray
:
ClearAll[sa, plot2]
sa[a_] := SparseArray[{i_, j_} /;
a - i < f1[j - (a + Boole[OddQ[a]])/2, a] &&
a - i < f2[j - (a + Boole[OddQ[a]])/2, a] -> 1, {a, a}]
plot2[a_] := ArrayPlot[sa[a], Mesh -> All]
Row[plot2 /@ Range[3, 21, 2]]
Original answer:
aplot[a_] := ArrayPlot[Boole @ MapIndexed[
a - #2[[1]] < f1[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &&
a - #2[[1]] < f2[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &,
matrix[a], {2}], Mesh -> All];
Row[Show[plot@#, Graphics[{FaceForm[], EdgeForm[{Thick, Red}], SSSTriangle[#, #, #]}]] & /@
Range[3, 21, 2]]
With a = 101;
and Mesh -> None
, we get
a = 1001;
ap1001 = ArrayPlot[Boole@MapIndexed[
a - #2[[1]] < f1[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &&
a - #2[[1]] < f2[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &,
matrix[a], {2}], Mesh -> None];
Graphics[{ap1001[[1]], FaceForm[], EdgeForm[{Thick, Red}],
SSSTriangle[1001, 1001, 1001]}]
$endgroup$
Update: An alternative method using SparseArray
:
ClearAll[sa, plot2]
sa[a_] := SparseArray[{i_, j_} /;
a - i < f1[j - (a + Boole[OddQ[a]])/2, a] &&
a - i < f2[j - (a + Boole[OddQ[a]])/2, a] -> 1, {a, a}]
plot2[a_] := ArrayPlot[sa[a], Mesh -> All]
Row[plot2 /@ Range[3, 21, 2]]
Original answer:
aplot[a_] := ArrayPlot[Boole @ MapIndexed[
a - #2[[1]] < f1[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &&
a - #2[[1]] < f2[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &,
matrix[a], {2}], Mesh -> All];
Row[Show[plot@#, Graphics[{FaceForm[], EdgeForm[{Thick, Red}], SSSTriangle[#, #, #]}]] & /@
Range[3, 21, 2]]
With a = 101;
and Mesh -> None
, we get
a = 1001;
ap1001 = ArrayPlot[Boole@MapIndexed[
a - #2[[1]] < f1[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &&
a - #2[[1]] < f2[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &,
matrix[a], {2}], Mesh -> None];
Graphics[{ap1001[[1]], FaceForm[], EdgeForm[{Thick, Red}],
SSSTriangle[1001, 1001, 1001]}]
edited 2 hours ago
answered 2 hours ago
kglrkglr
188k10203421
188k10203421
add a comment |
add a comment |
apoxeiro is a new contributor. Be nice, and check out our Code of Conduct.
apoxeiro is a new contributor. Be nice, and check out our Code of Conduct.
apoxeiro is a new contributor. Be nice, and check out our Code of Conduct.
apoxeiro is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f192959%2fgraphic-representation-of-a-triangle-using-arrayplot%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown