Non-Borel set in arbitrary metric spaceDerived Sets in arbitrary metric space$A subseteq (X,d)$ is compact....

Non-Borel set in arbitrary metric space

What is the meaning of "You've never met a graph you didn't like?"

Not hide and seek

Do native speakers use "ultima" and "proxima" frequently in spoken English?

How do I lift the insulation blower into the attic?

How would a solely written language work mechanically

How do I prevent inappropriate ads from appearing in my game?

How to get directions in deep space?

Why do Radio Buttons not fill the entire outer circle?

How to preserve electronics (computers, ipads, phones) for hundreds of years?

Showing mass murder in a kid's book

Can a Knock spell open the door to Mordenkainen's Magnificent Mansion?

Is there any common country to visit for persons holding UK and Schengen visas?

Are all namekians brothers?

Put the phone down / Put down the phone

Why does a 97 / 92 key piano exist by Bosendorfer?

Unfrosted light bulb

Do I have to take mana from my deck or hand when tapping this card?

"Oh no!" in Latin

What is it called when someone votes for an option that's not their first choice?

How to test the sharpness of a knife?

Is divisi notation needed for brass or woodwind in an orchestra?

Does capillary rise violate hydrostatic paradox?

I keep switching characters, how do I stop?



Non-Borel set in arbitrary metric space


Derived Sets in arbitrary metric space$A subseteq (X,d)$ is compact. Which metric $p$ makes $(A times A,p)$ also compact and $d: (A times A,p) rightarrow [0,infty)$ continuous?Borel sets and measurabilityapproximate a Borel set by a continuousAn example of Lebesgue measurable set but not Borel measurable besides the “subset of Cantor set” example.A Borel subset of a topological spaceseparability of a metric spacetotally disconnected and non Borel set.What do metric spaces look like?How do we get the notion “Borel regular” measures?













1












$begingroup$


Most sources give non-Borel set in Euclidean space. I wonder if there is a way to construct such sets in arbitrary metric space. In particular, is there a non-borel set in $C[0,1]$ all continuous functions on $[0,1]$ where metrics is supremum.










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    Most sources give non-Borel set in Euclidean space. I wonder if there is a way to construct such sets in arbitrary metric space. In particular, is there a non-borel set in $C[0,1]$ all continuous functions on $[0,1]$ where metrics is supremum.










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      Most sources give non-Borel set in Euclidean space. I wonder if there is a way to construct such sets in arbitrary metric space. In particular, is there a non-borel set in $C[0,1]$ all continuous functions on $[0,1]$ where metrics is supremum.










      share|cite|improve this question









      $endgroup$




      Most sources give non-Borel set in Euclidean space. I wonder if there is a way to construct such sets in arbitrary metric space. In particular, is there a non-borel set in $C[0,1]$ all continuous functions on $[0,1]$ where metrics is supremum.







      real-analysis general-topology functional-analysis measure-theory






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 5 hours ago









      Daniel LiDaniel Li

      752414




      752414






















          2 Answers
          2






          active

          oldest

          votes


















          5












          $begingroup$

          Yes, there is indeed examples of non-Borel sets in $C[0,1]$ of all continuous functions from $[0,1]$ to $mathbb{R}$ equipped with the uniform norm. Namely, the subset of all continuous nowhere differentiable functions is not a Borel set.



          This result can be found in:
          Mauldin, R. Daniel. The set of continuous nowhere differentiable functions. Pacific J. Math. 83 (1979), no. 1, 199--205.



          In regards to the question on whether it is possible to construct non-Borel sets in arbitrary metric spaces, then the answer is no. Consider the metric space $({x,y},d)$ equipped with the discrete metric $d:{x,y}times {x,y} to {0,1}$ given by
          $$
          d(x,y)=1, quad d(x,x)=d(y,y)=0.
          $$

          The Borel sigma algebra on this metric space is given by
          $$
          {{x},{y},{x,y},emptyset} = mathcal{P}({x,y})
          $$

          where $mathcal{P}({x,y})$ is the powerset of ${x,y}$, so all subsets are Borel measurable sets.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            +1.... With the discrete metric on any set, all subsets are open, and a fortiori, are Borel. Another example would be any countable metric space $X,$ as any $Ysubset X$ is equal to $ cup {{y}:yin Y},$ which is a countable union of closed sets
            $endgroup$
            – DanielWainfleet
            23 mins ago





















          2












          $begingroup$

          Martin gave a specific example in $C[0,1]$ and showed that the general example is negative. Let me argue that a broad class of spaces has a positive answer:



          In any second-countable topological space, there are only continuum-many Borel sets. Since space with at least continuum many points has more than continuum many subsets, this means that every second-countable space with continuum many points has non-Borel subsets.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3154781%2fnon-borel-set-in-arbitrary-metric-space%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            5












            $begingroup$

            Yes, there is indeed examples of non-Borel sets in $C[0,1]$ of all continuous functions from $[0,1]$ to $mathbb{R}$ equipped with the uniform norm. Namely, the subset of all continuous nowhere differentiable functions is not a Borel set.



            This result can be found in:
            Mauldin, R. Daniel. The set of continuous nowhere differentiable functions. Pacific J. Math. 83 (1979), no. 1, 199--205.



            In regards to the question on whether it is possible to construct non-Borel sets in arbitrary metric spaces, then the answer is no. Consider the metric space $({x,y},d)$ equipped with the discrete metric $d:{x,y}times {x,y} to {0,1}$ given by
            $$
            d(x,y)=1, quad d(x,x)=d(y,y)=0.
            $$

            The Borel sigma algebra on this metric space is given by
            $$
            {{x},{y},{x,y},emptyset} = mathcal{P}({x,y})
            $$

            where $mathcal{P}({x,y})$ is the powerset of ${x,y}$, so all subsets are Borel measurable sets.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              +1.... With the discrete metric on any set, all subsets are open, and a fortiori, are Borel. Another example would be any countable metric space $X,$ as any $Ysubset X$ is equal to $ cup {{y}:yin Y},$ which is a countable union of closed sets
              $endgroup$
              – DanielWainfleet
              23 mins ago


















            5












            $begingroup$

            Yes, there is indeed examples of non-Borel sets in $C[0,1]$ of all continuous functions from $[0,1]$ to $mathbb{R}$ equipped with the uniform norm. Namely, the subset of all continuous nowhere differentiable functions is not a Borel set.



            This result can be found in:
            Mauldin, R. Daniel. The set of continuous nowhere differentiable functions. Pacific J. Math. 83 (1979), no. 1, 199--205.



            In regards to the question on whether it is possible to construct non-Borel sets in arbitrary metric spaces, then the answer is no. Consider the metric space $({x,y},d)$ equipped with the discrete metric $d:{x,y}times {x,y} to {0,1}$ given by
            $$
            d(x,y)=1, quad d(x,x)=d(y,y)=0.
            $$

            The Borel sigma algebra on this metric space is given by
            $$
            {{x},{y},{x,y},emptyset} = mathcal{P}({x,y})
            $$

            where $mathcal{P}({x,y})$ is the powerset of ${x,y}$, so all subsets are Borel measurable sets.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              +1.... With the discrete metric on any set, all subsets are open, and a fortiori, are Borel. Another example would be any countable metric space $X,$ as any $Ysubset X$ is equal to $ cup {{y}:yin Y},$ which is a countable union of closed sets
              $endgroup$
              – DanielWainfleet
              23 mins ago
















            5












            5








            5





            $begingroup$

            Yes, there is indeed examples of non-Borel sets in $C[0,1]$ of all continuous functions from $[0,1]$ to $mathbb{R}$ equipped with the uniform norm. Namely, the subset of all continuous nowhere differentiable functions is not a Borel set.



            This result can be found in:
            Mauldin, R. Daniel. The set of continuous nowhere differentiable functions. Pacific J. Math. 83 (1979), no. 1, 199--205.



            In regards to the question on whether it is possible to construct non-Borel sets in arbitrary metric spaces, then the answer is no. Consider the metric space $({x,y},d)$ equipped with the discrete metric $d:{x,y}times {x,y} to {0,1}$ given by
            $$
            d(x,y)=1, quad d(x,x)=d(y,y)=0.
            $$

            The Borel sigma algebra on this metric space is given by
            $$
            {{x},{y},{x,y},emptyset} = mathcal{P}({x,y})
            $$

            where $mathcal{P}({x,y})$ is the powerset of ${x,y}$, so all subsets are Borel measurable sets.






            share|cite|improve this answer











            $endgroup$



            Yes, there is indeed examples of non-Borel sets in $C[0,1]$ of all continuous functions from $[0,1]$ to $mathbb{R}$ equipped with the uniform norm. Namely, the subset of all continuous nowhere differentiable functions is not a Borel set.



            This result can be found in:
            Mauldin, R. Daniel. The set of continuous nowhere differentiable functions. Pacific J. Math. 83 (1979), no. 1, 199--205.



            In regards to the question on whether it is possible to construct non-Borel sets in arbitrary metric spaces, then the answer is no. Consider the metric space $({x,y},d)$ equipped with the discrete metric $d:{x,y}times {x,y} to {0,1}$ given by
            $$
            d(x,y)=1, quad d(x,x)=d(y,y)=0.
            $$

            The Borel sigma algebra on this metric space is given by
            $$
            {{x},{y},{x,y},emptyset} = mathcal{P}({x,y})
            $$

            where $mathcal{P}({x,y})$ is the powerset of ${x,y}$, so all subsets are Borel measurable sets.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited 4 hours ago

























            answered 4 hours ago









            MartinMartin

            1,106917




            1,106917












            • $begingroup$
              +1.... With the discrete metric on any set, all subsets are open, and a fortiori, are Borel. Another example would be any countable metric space $X,$ as any $Ysubset X$ is equal to $ cup {{y}:yin Y},$ which is a countable union of closed sets
              $endgroup$
              – DanielWainfleet
              23 mins ago




















            • $begingroup$
              +1.... With the discrete metric on any set, all subsets are open, and a fortiori, are Borel. Another example would be any countable metric space $X,$ as any $Ysubset X$ is equal to $ cup {{y}:yin Y},$ which is a countable union of closed sets
              $endgroup$
              – DanielWainfleet
              23 mins ago


















            $begingroup$
            +1.... With the discrete metric on any set, all subsets are open, and a fortiori, are Borel. Another example would be any countable metric space $X,$ as any $Ysubset X$ is equal to $ cup {{y}:yin Y},$ which is a countable union of closed sets
            $endgroup$
            – DanielWainfleet
            23 mins ago






            $begingroup$
            +1.... With the discrete metric on any set, all subsets are open, and a fortiori, are Borel. Another example would be any countable metric space $X,$ as any $Ysubset X$ is equal to $ cup {{y}:yin Y},$ which is a countable union of closed sets
            $endgroup$
            – DanielWainfleet
            23 mins ago













            2












            $begingroup$

            Martin gave a specific example in $C[0,1]$ and showed that the general example is negative. Let me argue that a broad class of spaces has a positive answer:



            In any second-countable topological space, there are only continuum-many Borel sets. Since space with at least continuum many points has more than continuum many subsets, this means that every second-countable space with continuum many points has non-Borel subsets.






            share|cite|improve this answer









            $endgroup$


















              2












              $begingroup$

              Martin gave a specific example in $C[0,1]$ and showed that the general example is negative. Let me argue that a broad class of spaces has a positive answer:



              In any second-countable topological space, there are only continuum-many Borel sets. Since space with at least continuum many points has more than continuum many subsets, this means that every second-countable space with continuum many points has non-Borel subsets.






              share|cite|improve this answer









              $endgroup$
















                2












                2








                2





                $begingroup$

                Martin gave a specific example in $C[0,1]$ and showed that the general example is negative. Let me argue that a broad class of spaces has a positive answer:



                In any second-countable topological space, there are only continuum-many Borel sets. Since space with at least continuum many points has more than continuum many subsets, this means that every second-countable space with continuum many points has non-Borel subsets.






                share|cite|improve this answer









                $endgroup$



                Martin gave a specific example in $C[0,1]$ and showed that the general example is negative. Let me argue that a broad class of spaces has a positive answer:



                In any second-countable topological space, there are only continuum-many Borel sets. Since space with at least continuum many points has more than continuum many subsets, this means that every second-countable space with continuum many points has non-Borel subsets.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 3 hours ago









                Noah SchweberNoah Schweber

                127k10151290




                127k10151290






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3154781%2fnon-borel-set-in-arbitrary-metric-space%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    “%fieldName is a required field.”, in Magento2 REST API Call for GET Method Type The Next...

                    How to change City field to a dropdown in Checkout step Magento 2Magento 2 : How to change UI field(s)...

                    變成蝙蝠會怎樣? 參考資料 外部連結 导航菜单Thomas Nagel, "What is it like to be a...